BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 17898166)

  • 1. The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels.
    Daran-Lapujade P; Rossell S; van Gulik WM; Luttik MA; de Groot MJ; Slijper M; Heck AJ; Daran JM; de Winde JH; Westerhoff HV; Pronk JT; Bakker BM
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15753-8. PubMed ID: 17898166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism.
    van den Brink J; Canelas AB; van Gulik WM; Pronk JT; Heijnen JJ; de Winde JH; Daran-Lapujade P
    Appl Environ Microbiol; 2008 Sep; 74(18):5710-23. PubMed ID: 18641162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of the high temperature-induced glycolytic flux increase in Saccharomyces cerevisiae reveals dominant metabolic regulation.
    Postmus J; Canelas AB; Bouwman J; Bakker BM; van Gulik W; de Mattos MJ; Brul S; Smits GJ
    J Biol Chem; 2008 Aug; 283(35):23524-32. PubMed ID: 18562308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of the glycolytic flux in Saccharomyces cerevisiae grown at low temperature: a multi-level analysis in anaerobic chemostat cultures.
    Tai SL; Daran-Lapujade P; Luttik MA; Walsh MC; Diderich JA; Krijger GC; van Gulik WM; Pronk JT; Daran JM
    J Biol Chem; 2007 Apr; 282(14):10243-51. PubMed ID: 17251183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical and metabolic regulation of glucose influx in starved Saccharomyces cerevisiae.
    Rossell S; van der Weijden CC; Kruckeberg AL; Bakker BM; Westerhoff HV
    FEMS Yeast Res; 2005 Apr; 5(6-7):611-9. PubMed ID: 15780660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isoenzyme expression changes in response to high temperature determine the metabolic regulation of increased glycolytic flux in yeast.
    Postmus J; Aardema R; de Koning LJ; de Koster CG; Brul S; Smits GJ
    FEMS Yeast Res; 2012 Aug; 12(5):571-81. PubMed ID: 22548758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systems-level analysis of mechanisms regulating yeast metabolic flux.
    Hackett SR; Zanotelli VR; Xu W; Goya J; Park JO; Perlman DH; Gibney PA; Botstein D; Storey JD; Rabinowitz JD
    Science; 2016 Oct; 354(6311):. PubMed ID: 27789812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding regulation of metabolism through feasibility analysis.
    Nikerel E; Berkhout J; Hu F; Teusink B; Reinders MJ; de Ridder D
    PLoS One; 2012; 7(7):e39396. PubMed ID: 22808034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the complexity of flux regulation: a new method demonstrated for nutrient starvation in Saccharomyces cerevisiae.
    Rossell S; van der Weijden CC; Lindenbergh A; van Tuijl A; Francke C; Bakker BM; Westerhoff HV
    Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2166-71. PubMed ID: 16467155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast response and tolerance to benzoic acid involves the Gcn4- and Stp1-regulated multidrug/multixenobiotic resistance transporter Tpo1.
    Godinho CP; Mira NP; Cabrito TR; Teixeira MC; Alasoo K; Guerreiro JF; Sá-Correia I
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5005-5018. PubMed ID: 28409382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism.
    Solis-Escalante D; Kuijpers NG; Barrajon-Simancas N; van den Broek M; Pronk JT; Daran JM; Daran-Lapujade P
    Eukaryot Cell; 2015 Aug; 14(8):804-16. PubMed ID: 26071034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of benzoic acid on glycolytic metabolite levels and intracellular pH in Saccharomyces cerevisiae.
    Warth AD
    Appl Environ Microbiol; 1991 Dec; 57(12):3415-7. PubMed ID: 1785917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed and diverse metabolic and gene-expression regulation of the glycolytic and fermentative pathways in response to a HXK2 deletion in Saccharomyces cerevisiae.
    Rossell S; Lindenbergh A; van der Weijden CC; Kruckeberg AL; van Eunen K; Westerhoff HV; Bakker BM
    FEMS Yeast Res; 2008 Feb; 8(1):155-64. PubMed ID: 17662056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity.
    Jansen MLA; Diderich JA; Mashego M; Hassane A; de Winde JH; Daran-Lapujade P; Pronk JT
    Microbiology (Reading); 2005 May; 151(Pt 5):1657-1669. PubMed ID: 15870473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetic and metabolic transient response of Saccharomyces cerevisiae to benzoic acid.
    Kresnowati MT; van Winden WA; van Gulik WM; Heijnen JJ
    FEBS J; 2008 Nov; 275(22):5527-41. PubMed ID: 18959741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A potential role of the cytoskeleton of Saccharomyces cerevisiae in a functional organization of glycolytic enzymes.
    Götz R; Schlüter E; Shoham G; Zimmermann FK
    Yeast; 1999 Nov; 15(15):1619-29. PubMed ID: 10572259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The top genes: on the distance from transcript to function in yeast glycolysis.
    Fraenkel DG
    Curr Opin Microbiol; 2003 Apr; 6(2):198-201. PubMed ID: 12732312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of mutations of GID protein-coding genes on malate production and enzyme expression profiles in Saccharomyces cerevisiae.
    Negoro H; Matsumura K; Matsuda F; Shimizu H; Hata Y; Ishida H
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4971-4983. PubMed ID: 32248437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic manipulation of 6-phosphofructo-1-kinase and fructose 2,6-bisphosphate levels affects the extent to which benzoic acid inhibits the growth of Saccharomyces cerevisiae.
    Pearce AK; Booth IR; Brown AJP
    Microbiology (Reading); 2001 Feb; 147(Pt 2):403-410. PubMed ID: 11158357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion or overexpression of mitochondrial NAD+ carriers in Saccharomyces cerevisiae alters cellular NAD and ATP contents and affects mitochondrial metabolism and the rate of glycolysis.
    Agrimi G; Brambilla L; Frascotti G; Pisano I; Porro D; Vai M; Palmieri L
    Appl Environ Microbiol; 2011 Apr; 77(7):2239-46. PubMed ID: 21335394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.