These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 17898209)

  • 21. The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.
    Christianson GB; Sahani M; Linden JF
    J Neurosci; 2008 Jan; 28(2):446-55. PubMed ID: 18184787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex.
    Laudanski J; Edeline JM; Huetz C
    PLoS One; 2012; 7(11):e50539. PubMed ID: 23209771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex.
    Linden JF; Liu RC; Sahani M; Schreiner CE; Merzenich MM
    J Neurophysiol; 2003 Oct; 90(4):2660-75. PubMed ID: 12815016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectrotemporal dynamics of auditory cortical synaptic receptive field plasticity.
    Froemke RC; Martins AR
    Hear Res; 2011 Sep; 279(1-2):149-61. PubMed ID: 21426927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex.
    Moucha R; Pandya PK; Engineer ND; Rathbun DL; Kilgard MP
    Exp Brain Res; 2005 May; 162(4):417-27. PubMed ID: 15616812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds.
    Theunissen FE; Sen K; Doupe AJ
    J Neurosci; 2000 Mar; 20(6):2315-31. PubMed ID: 10704507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid tuning shifts in human auditory cortex enhance speech intelligibility.
    Holdgraf CR; de Heer W; Pasley B; Rieger J; Crone N; Lin JJ; Knight RT; Theunissen FE
    Nat Commun; 2016 Dec; 7():13654. PubMed ID: 27996965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal coherence structure rapidly shapes neuronal interactions.
    Lu K; Xu Y; Yin P; Oxenham AJ; Fritz JB; Shamma SA
    Nat Commun; 2017 Jan; 8():13900. PubMed ID: 28054545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A dynamic network model of temporal receptive fields in primary auditory cortex.
    Rahman M; Willmore BDB; King AJ; Harper NS
    PLoS Comput Biol; 2019 May; 15(5):e1006618. PubMed ID: 31059503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons.
    Harper NS; Schoppe O; Willmore BD; Cui Z; Schnupp JW; King AJ
    PLoS Comput Biol; 2016 Nov; 12(11):e1005113. PubMed ID: 27835647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Progressive degradation and subsequent refinement of acoustic representations in the adult auditory cortex.
    Bao S; Chang EF; Davis JD; Gobeske KT; Merzenich MM
    J Neurosci; 2003 Nov; 23(34):10765-75. PubMed ID: 14645468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laminar profile of task-related plasticity in ferret primary auditory cortex.
    Francis NA; Elgueda D; Englitz B; Fritz JB; Shamma SA
    Sci Rep; 2018 Nov; 8(1):16375. PubMed ID: 30401927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition.
    Qiu A; Schreiner CE; EscabĂ­ MA
    J Neurophysiol; 2003 Jul; 90(1):456-76. PubMed ID: 12660353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A role for maternal physiological state in preserving auditory cortical plasticity for salient infant calls.
    Lin FG; Galindo-Leon EE; Ivanova TN; Mappus RC; Liu RC
    Neuroscience; 2013 Sep; 247():102-16. PubMed ID: 23707982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning-induced changes of auditory receptive fields.
    Weinberger NM
    Curr Opin Neurobiol; 1993 Aug; 3(4):570-7. PubMed ID: 8219724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational Neural Modeling of Auditory Cortical Receptive Fields.
    Chambers JD; Elgueda D; Fritz JB; Shamma SA; Burkitt AN; Grayden DB
    Front Comput Neurosci; 2019; 13():28. PubMed ID: 31178710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological and behavioral studies of spatial coding in the auditory cortex.
    King AJ; Bajo VM; Bizley JK; Campbell RA; Nodal FR; Schulz AL; Schnupp JW
    Hear Res; 2007 Jul; 229(1-2):106-15. PubMed ID: 17314017
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive, behaviorally gated, persistent encoding of task-relevant auditory information in ferret frontal cortex.
    Fritz JB; David SV; Radtke-Schuller S; Yin P; Shamma SA
    Nat Neurosci; 2010 Aug; 13(8):1011-9. PubMed ID: 20622871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cross-correlation and joint spectro-temporal receptive field properties in auditory cortex.
    Tomita M; Eggermont JJ
    J Neurophysiol; 2005 Jan; 93(1):378-92. PubMed ID: 15342718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frequency-modulation encoding in the primary auditory cortex of the awake owl monkey.
    Atencio CA; Blake DT; Strata F; Cheung SW; Merzenich MM; Schreiner CE
    J Neurophysiol; 2007 Oct; 98(4):2182-95. PubMed ID: 17699695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.