These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 17898442)

  • 1. Ensemble modeling of E. coli in the Charles River, Boston, Massachusetts, USA.
    Hellweger FL
    Water Sci Technol; 2007; 56(6):39-46. PubMed ID: 17898442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delineation of a chemical and biological signature for stormwater pollution in an urban river.
    Salmore AK; Hollis EJ; McLellan SL
    J Water Health; 2006 Jun; 4(2):247-62. PubMed ID: 16813017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the effect of livestock inputs of E. coli on microbiological compliance of bathing waters.
    Vinten AJ; Lewis DR; McGechan M; Duncan A; Aitken M; Hill C; Crawford C
    Water Res; 2004; 38(14-15):3215-24. PubMed ID: 15276737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of predictive models for determining enterococci levels at Gulf Coast beaches.
    Zhang Z; Deng Z; Rusch KA
    Water Res; 2012 Feb; 46(2):465-74. PubMed ID: 22130001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Watershed vulnerability predictions for the Ozarks using landscape models.
    Lopez RD; Nash MS; Heggem DT; Ebert DW
    J Environ Qual; 2008; 37(5):1769-80. PubMed ID: 18689738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling potential herbicide loss to surface waters on the Swiss plateau.
    Siber R; Stamm C; Reichert P
    J Environ Manage; 2009 Oct; 91(1):290-302. PubMed ID: 19783355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of different model approaches for a hygiene early warning system at the lower Ruhr River, Germany.
    Mälzer HJ; Aus der Beek T; Müller S; Gebhardt J
    Int J Hyg Environ Health; 2016 Oct; 219(7 Pt B):671-680. PubMed ID: 26163780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape.
    Wilkes G; Edge T; Gannon V; Jokinen C; Lyautey E; Medeiros D; Neumann N; Ruecker N; Topp E; Lapen DR
    Water Res; 2009 May; 43(8):2209-23. PubMed ID: 19339033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy of monitoring and empirical predictive modeling at improving public health protection at Chicago beaches.
    Nevers MB; Whitman RL
    Water Res; 2011 Feb; 45(4):1659-68. PubMed ID: 21195447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining modeling and monitoring to study fecal contamination in a small rural catchment.
    Bougeard M; Le Saux JC; Teillon A; Belloir J; Le Mennec C; Thome S; Durand G; Pommepuy M
    J Water Health; 2011 Sep; 9(3):467-82. PubMed ID: 21976194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new general mechanistic river model for radionuclides from single pulse fallouts which can be run by readily accessible driving variables.
    Håkanson L
    J Environ Radioact; 2005; 80(3):357-82. PubMed ID: 15725508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A long-term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four US receiving waters: characteristics of the study streams, sample sites, mills, and mill effluents.
    Hall TJ; Ragsdale RL; Arthurs WJ; Ikoma J; Borton DL; Cook DL
    Integr Environ Assess Manag; 2009 Apr; 5(2):199-218. PubMed ID: 19063588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nowcast modeling of Escherichia coli concentrations at multiple urban beaches of southern Lake Michigan.
    Nevers MB; Whitman RL
    Water Res; 2005 Dec; 39(20):5250-60. PubMed ID: 16310242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partitioning and fate of particle-associated E. coli in river waters.
    Garcia-Armisen T; Servais P
    Water Environ Res; 2009 Jan; 81(1):21-8. PubMed ID: 19280896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling Escherichia coli concentrations in the tidal Scheldt river and estuary.
    de Brauwere A; de Brye B; Servais P; Passerat J; Deleersnijder E
    Water Res; 2011 Apr; 45(9):2724-38. PubMed ID: 21435674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool.
    Aqil M; Kita I; Yano A; Nishiyama S
    J Environ Manage; 2007 Oct; 85(1):215-23. PubMed ID: 17110016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation and trend analysis of the water quality monitoring daily data in Nestos River Delta. Contribution to the sustainable management and results for the years 2000-2002.
    Psilovikos A; Margoni S; Psilovikos A
    Environ Monit Assess; 2006 May; 116(1-3):543-62. PubMed ID: 16779611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions.
    Foppen JW; Schijven JF
    Water Res; 2006 Feb; 40(3):401-26. PubMed ID: 16434075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibrating and validating bacterial water quality models: a Bayesian approach.
    Gronewold AD; Qian SS; Wolpert RL; Reckhow KH
    Water Res; 2009 Jun; 43(10):2688-98. PubMed ID: 19395060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse estimation of nonpoint sources of fecal coliform for establishing allowable load for Wye River, Maryland.
    Shen J; Jia JJ; Sisson GM
    Water Res; 2006 Oct; 40(18):3333-42. PubMed ID: 16978682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.