BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17898475)

  • 1. [Optical resolution of 2-alkanol by lipase-catalyzed acetylation with vinyl acetate in packed-bed reactor with recycling system].
    Yanagishita H; Sakaki K; Hirata H
    J Oleo Sci; 2007; 56(3):137-48. PubMed ID: 17898475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic studies on lipase-catalyzed acetylation of 2-alkanol with vinyl acetate in organic solvent.
    Hirata H; Kawanishi M; Iwata Y; Sakaki K; Yanagishita H
    J Oleo Sci; 2007; 56(6):309-17. PubMed ID: 17898497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homogeneous esterification by lipase from Burkholderia cepacia in the fluorinated solvent.
    Shipovskov S
    Biotechnol Prog; 2008; 24(6):1262-6. PubMed ID: 19194939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Burkholderia cepacia lipase immobilization for hydrolytic reactions and the kinetic resolution of the non-equimolar mixtures of isomeric alcohols.
    Hrydziuszko Z; Strub DJ; Labus K; Bryjak J
    Bioorg Chem; 2019 Dec; 93():102745. PubMed ID: 30691728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent Stability Study with Thermodynamic Analysis and Superior Biocatalytic Activity of Burkholderia cepacia Lipase Immobilized on Biocompatible Hybrid Matrix of Poly(vinyl alcohol) and Hypromellose.
    Badgujar KC; Bhanage BM
    J Phys Chem B; 2014 Dec; 118(51):14808-19. PubMed ID: 25474503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining lipase-catalyzed enantiomer-selective acylation with fluorous phase labeling: a new method for the resolution of racemic alcohols.
    Hungerhoff B; Sonnenschein H; Theil F
    J Org Chem; 2002 Mar; 67(6):1781-5. PubMed ID: 11895393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient and enzymatic regioselective undecylenoylation of gastrodin in 2-methyltetrahydrofuran-containing systems.
    Yang R; Liu X; Chen Z; Yang C; Lin Y; Wang S
    PLoS One; 2014; 9(10):e110342. PubMed ID: 25329539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syntheses of enantiopure aliphatic secondary alcohols and acetates by bioresolution with lipase B from Candida antarctica.
    Ferreira HV; Rocha LC; Severino RP; Porto AL
    Molecules; 2012 Jul; 17(8):8955-67. PubMed ID: 22836214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lipase with broad solvent stability from Burkholderia cepacia RQ3: isolation, characteristics and application for chiral resolution of 1-phenylethanol.
    Xie C; Wu B; Qin S; He B
    Bioprocess Biosyst Eng; 2016 Jan; 39(1):59-66. PubMed ID: 26497492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mono- and disaccharides enhance the activity and enantioselectivity of Burkholderia cepacia lipase in organic solvent but do not significantly affect its conformation.
    Secundo F; Carrea G
    Biotechnol Bioeng; 2005 Nov; 92(4):438-46. PubMed ID: 16028297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additives enhancing the catalytic properties of lipase from Burkholderia cepacia immobilized on mixed-function-grafted mesoporous silica gel.
    Abaházi E; Boros Z; Poppe L
    Molecules; 2014 Jul; 19(7):9818-37. PubMed ID: 25006788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipase entrapment in protamine-induced bio-zirconia particles: characterization and application to the resolution of (R,S)-1-phenylethanol.
    Wang JY; Ma CL; Bao YM; Xu PS
    Enzyme Microb Technol; 2012 Jun; 51(1):40-6. PubMed ID: 22579389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specificity of lipases in alkoxycarbonylation reaction: QSAR model development and experimental validation.
    Chandrasekaran SM; Bhartiya S; Wangikar PP
    Biotechnol Bioeng; 2006 Jun; 94(3):554-64. PubMed ID: 16528758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of enantioselectivity of lipase catalyzed kinetic resolution using umbrella sampling.
    Mathpati AC; Bhanage BM
    J Biotechnol; 2018 Oct; 283():70-80. PubMed ID: 30031094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implication of substrate-assisted catalysis on improving lipase activity or enantioselectivity in organic solvents.
    Tsai SW; Chen CC; Yang HS; Ng IS; Chen TL
    Biochim Biophys Acta; 2006 Aug; 1764(8):1424-8. PubMed ID: 16919508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced productivity of electrospun polyvinyl alcohol nanofibrous mats using aqueous N,N-dimethylformamide solution and their application to lipase-immobilizing membrane-shaped catalysts.
    Sawada K; Sakai S; Taya M
    J Biosci Bioeng; 2012 Aug; 114(2):204-8. PubMed ID: 22595342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations.
    Park S; Kazlauskas RJ
    J Org Chem; 2001 Dec; 66(25):8395-401. PubMed ID: 11735517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of lipase immobilized on the biocompatible ternary blend polymer matrix for synthesis of citronellyl acetate in non-aqueous media: kinetic modelling study.
    Badgujar KC; Bhanage BM
    Enzyme Microb Technol; 2014 Apr; 57():16-25. PubMed ID: 24629263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipase-catalyzed cellulose acetylation in aqueous and organic media.
    Yang K; Wang YJ
    Biotechnol Prog; 2003; 19(6):1664-71. PubMed ID: 14656139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.
    Sasso F; Natalello A; Castoldi S; Lotti M; Santambrogio C; Grandori R
    Biotechnol J; 2016 Jul; 11(7):954-60. PubMed ID: 27067648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.