BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 17898842)

  • 1. Thiosulfate oxidation and mixotrophic growth of Methylobacterium oryzae.
    Anandham R; Indiragandhi P; Madhaiyan M; Kim K; Yim W; Saravanan VS; Chung J; Sa T
    Can J Microbiol; 2007 Jul; 53(7):869-76. PubMed ID: 17898842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiosulfate Oxidation and mixotrophic growth of Methylobacterium goesingense and Methylobacterium fujisawaense.
    Anandham R; Indiragandhi P; Madhaiyan M; Chung J; Ryu KY; Jee HJ; Sa T
    J Microbiol Biotechnol; 2009 Jan; 19(1):17-22. PubMed ID: 19190404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants.
    Anandham R; Indiragandhi P; Madhaiyan M; Ryu KY; Jee HJ; Sa TM
    Res Microbiol; 2008; 159(9-10):579-89. PubMed ID: 18832027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced inorganic sulfur oxidation supports autotrophic and mixotrophic growth of Magnetospirillum strain J10 and Magnetospirillum gryphiswaldense.
    Geelhoed JS; Kleerebezem R; Sorokin DY; Stams AJ; van Loosdrecht MC
    Environ Microbiol; 2010 Apr; 12(4):1031-40. PubMed ID: 20105221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of oxidation of inorganic sulfur compounds by thiosulfate-grown Thiobacillus thiooxidans.
    Masau RJ; Oh JK; Suzuki I
    Can J Microbiol; 2001 Apr; 47(4):348-58. PubMed ID: 11358175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The S4-intermediate pathway for the oxidation of thiosulfate by the chemolithoautotroph Tetrathiobacter kashmirensis and inhibition of tetrathionate oxidation by sulfite.
    Dam B; Mandal S; Ghosh W; Das Gupta SK; Roy P
    Res Microbiol; 2007 May; 158(4):330-8. PubMed ID: 17509837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST.
    Rameez MJ; Pyne P; Mandal S; Chatterjee S; Alam M; Bhattacharya S; Mondal N; Sarkar J; Ghosh W
    Microbiol Res; 2020 Jan; 230():126345. PubMed ID: 31585234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of cultivation conditions on the growth and activities of sulfur metabolism enzymes and carboxylases of Sulfobacillus thermosulfidooxidans subsp. asporogenes strain 41].
    Egorova MA; Tsaplina IA; Zakharchuk LM; Bogdanova TI; Krasil'nikova EN
    Prikl Biokhim Mikrobiol; 2004; 40(4):448-54. PubMed ID: 15455718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. rdlA, a new gene encoding a rhodanese-like protein in Halanaerobium congolense and other thiosulfate-reducing anaerobes.
    Ravot G; Casalot L; Ollivier B; Loison G; Magot M
    Res Microbiol; 2005 Dec; 156(10):1031-8. PubMed ID: 16085393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiosulfate oxidation by Thiomicrospira thermophila: metabolic flexibility in response to ambient geochemistry.
    Houghton JL; Foustoukos DI; Flynn TM; Vetriani C; Bradley AS; Fike DA
    Environ Microbiol; 2016 Sep; 18(9):3057-72. PubMed ID: 26914243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Oxidation of inorganic sulfur compounds by obligatory organotrophic bacteria].
    Sorokin DIu
    Mikrobiologiia; 2003; 72(6):725-39. PubMed ID: 14768537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutritional studies with Pseudomonas aeruginosa grown on inorganic sulfur sources.
    Schook LB; Berk RS
    J Bacteriol; 1978 Mar; 133(3):1378-82. PubMed ID: 417066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable sulfur isotope fractionation and discrimination between the sulfur atoms of thiosulfate during oxidation by Halothiobacillus neapolitanus.
    Kelly DP
    FEMS Microbiol Lett; 2008 May; 282(2):299-306. PubMed ID: 18373645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli.
    Kawano Y; Onishi F; Shiroyama M; Miura M; Tanaka N; Oshiro S; Nonaka G; Nakanishi T; Ohtsu I
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):6879-6889. PubMed ID: 28756590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disturbance of brain energy and redox homeostasis provoked by sulfite and thiosulfate: potential pathomechanisms involved in the neuropathology of sulfite oxidase deficiency.
    Grings M; Moura AP; Parmeggiani B; Marcowich GF; Amaral AU; de Souza Wyse AT; Wajner M; Leipnitz G
    Gene; 2013 Dec; 531(2):191-8. PubMed ID: 24035933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of flavoredoxin gene in Desulfovibrio gigas reveals its participation in thiosulfate reduction.
    Broco M; Rousset M; Oliveira S; Rodrigues-Pousada C
    FEBS Lett; 2005 Aug; 579(21):4803-7. PubMed ID: 16099456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and physiology of Thiobacillus novellus under nutrient-limited mixotrophic conditions.
    Leefeldt RH; Matin A
    J Bacteriol; 1980 May; 142(2):645-50. PubMed ID: 7380804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Thiosulfate metabolism in Rhodopseudomonas palustris].
    Rodova NA; Pedan LV
    Mikrobiologiia; 1980; 49(2):221-6. PubMed ID: 6771496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of electron transport during thiosulfate oxidation in an obligately mixotrophic bacterium Thiomonas bhubaneswarensis strain S10 (DSM 18181
    Narayan KD; Sabat SC; Das SK
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1239-1252. PubMed ID: 27832308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Thiosulfate oxidation by nonsulfur purple bacteria].
    Keppen OI; Pedan LV; Rodova NA
    Mikrobiologiia; 1980; 49(5):682-6. PubMed ID: 6777642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.