These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Structural divergence and functional versatility of the rhodopsin superfamily. Kouyama T; Murakami M Photochem Photobiol Sci; 2010 Nov; 9(11):1458-65. PubMed ID: 20931138 [TBL] [Abstract][Full Text] [Related]
5. Internal water molecules of archaeal rhodopsins (Review). Furutani Y; Kandori H Mol Membr Biol; 2002; 19(4):257-65. PubMed ID: 12512772 [TBL] [Abstract][Full Text] [Related]
6. Of ion pumps, sensors and channels - perspectives on microbial rhodopsins between science and history. Grote M; Engelhard M; Hegemann P Biochim Biophys Acta; 2014 May; 1837(5):533-45. PubMed ID: 23994288 [TBL] [Abstract][Full Text] [Related]
8. Eubacterial rhodopsins - unique photosensors and diverse ion pumps. Brown LS Biochim Biophys Acta; 2014 May; 1837(5):553-61. PubMed ID: 23748216 [TBL] [Abstract][Full Text] [Related]
9. The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. Klare JP; Gordeliy VI; Labahn J; Büldt G; Steinhoff HJ; Engelhard M FEBS Lett; 2004 Apr; 564(3):219-24. PubMed ID: 15111099 [TBL] [Abstract][Full Text] [Related]
10. Shedding new light on retinal protein photochemistry. Wand A; Gdor I; Zhu J; Sheves M; Ruhman S Annu Rev Phys Chem; 2013; 64():437-58. PubMed ID: 23331307 [TBL] [Abstract][Full Text] [Related]
11. Functional assay of light-induced ion-transport by rhodopsins. Hososhima S; Abe-Yoshizumi R; Kandori H Methods Enzymol; 2023; 679():331-342. PubMed ID: 36682869 [TBL] [Abstract][Full Text] [Related]
12. Crossing the borders: archaeal rhodopsins go bacterial. Gärtner W; Losi A Trends Microbiol; 2003 Sep; 11(9):405-7. PubMed ID: 13678852 [No Abstract] [Full Text] [Related]
13. The Road to Optogenetics: Microbial Rhodopsins. Govorunova EG; Koppel LA Biochemistry (Mosc); 2016 Sep; 81(9):928-40. PubMed ID: 27682165 [TBL] [Abstract][Full Text] [Related]
14. Molecular and evolutionary aspects of microbial sensory rhodopsins. Inoue K; Tsukamoto T; Sudo Y Biochim Biophys Acta; 2014 May; 1837(5):562-77. PubMed ID: 23732219 [TBL] [Abstract][Full Text] [Related]
15. [The development of single molecular method for the study on the signal transduction mechanism of microbial rhodopsins]. Inoue K Seikagaku; 2014 Apr; 86(2):160-6. PubMed ID: 24864442 [No Abstract] [Full Text] [Related]
16. Characterization of a signaling complex composed of sensory rhodopsin I and its cognate transducer protein from the eubacterium Salinibacter ruber. Sudo Y; Okada A; Suzuki D; Inoue K; Irieda H; Sakai M; Fujii M; Furutani Y; Kandori H; Homma M Biochemistry; 2009 Oct; 48(42):10136-45. PubMed ID: 19778064 [TBL] [Abstract][Full Text] [Related]
17. Transmembrane signal transduction in archaeal phototaxis: the sensory rhodopsin II-transducer complex studied by electron paramagnetic resonance spectroscopy. Klare JP; Bordignon E; Engelhard M; Steinhoff HJ Eur J Cell Biol; 2011 Sep; 90(9):731-9. PubMed ID: 21684631 [TBL] [Abstract][Full Text] [Related]
18. Substitution of Pro206 and Ser86 residues in the retinal binding pocket of Anabaena sensory rhodopsin is not sufficient for proton pumping function. Choi AR; Kim SY; Yoon SR; Bae K; Jung KH J Microbiol Biotechnol; 2007 Jan; 17(1):138-45. PubMed ID: 18051365 [TBL] [Abstract][Full Text] [Related]
19. Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications. Govorunova EG; Sineshchekov OA; Li H; Spudich JL Annu Rev Biochem; 2017 Jun; 86():845-872. PubMed ID: 28301742 [TBL] [Abstract][Full Text] [Related]