BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 17899028)

  • 1. Characterization and application of quantum dot nanocrystal-monoclonal antibody conjugates for the determination of sulfamethazine in milk by fluoroimmunoassay.
    Shen J; Xu F; Jiang H; Wang Z; Tong J; Guo P; Ding S
    Anal Bioanal Chem; 2007 Dec; 389(7-8):2243-50. PubMed ID: 17899028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of quantum dot-antibody conjugates for detection of sulfamethazine residue in chicken muscle tissue.
    Ding S; Chen J; Jiang H; He J; Shi W; Zhao W; Shen J
    J Agric Food Chem; 2006 Aug; 54(17):6139-42. PubMed ID: 16910698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monoclonal antibody-quantum dots CdTe conjugate-based fluoroimmunoassay for the determination of aflatoxin B1 in peanuts.
    Zhang Z; Li Y; Li P; Zhang Q; Zhang W; Hu X; Ding X
    Food Chem; 2014 Mar; 146():314-9. PubMed ID: 24176348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rapid and sensitive fluoroimmunoassay based on quantum dot for the detection of chlorpyrifos residue in drinking water.
    Chen YP; Ning B; Liu N; Feng Y; Liu Z; Liu X; Gao ZX
    J Environ Sci Health B; 2010 Aug; 45(6):508-15. PubMed ID: 20574871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a sensitive monoclonal antibody-based ELISA for the detection of sulfamethazine in cow milk, honey, and swine urine.
    Yang T; Ren X; Li Y; Chen F
    Hybridoma (Larchmt); 2010 Oct; 29(5):403-7. PubMed ID: 21050040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel fluoroimmunoassays for detecting ochratoxin A using CdTe quantum dots.
    Yao J; Xing G; Han J; Sun Y; Wang F; Deng R; Hu X; Zhang G
    J Biophotonics; 2017 May; 10(5):657-663. PubMed ID: 27243787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and characterization of monoclonal and recombinant antibodies against antimicrobial sulfamethazine.
    Yang ZY; Shim WB; Kim MG; Lee KH; Kim KS; Kim KY; Kim CH; Ha SD; Chung DH
    J Microbiol Biotechnol; 2007 Apr; 17(4):571-8. PubMed ID: 18051266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Fluoroimmunoassay for Detecting Ruscogenin with Monoclonal Antibodies Conjugated with CdSe/ZnS Quantum Dots.
    Zhang H; Xu T; Gao L; Liu X; Liu J; Yu B
    Molecules; 2017 Jul; 22(8):. PubMed ID: 28933731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Dot Nanobeads Based Fluorescence Immunoassay for the Quantitative Detection of Sulfamethazine in Chicken and Milk.
    Wei D; Liu J; Wang Z; Zhou S; Wang S; Tong W; Peng J
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluoroimmunoassay based on quantum dot-streptavidin conjugate for the detection of chlorpyrifos.
    Chen Y; Ren HL; Liu N; Sai N; Liu X; Liu Z; Gao Z; Ning Ba
    J Agric Food Chem; 2010 Aug; 58(16):8895-903. PubMed ID: 23654227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a lateral flow fluorescent microsphere immunoassay for the determination of sulfamethazine in milk.
    Chen R; Li H; Zhang H; Zhang S; Shi W; Shen J; Wang Z
    Anal Bioanal Chem; 2013 Aug; 405(21):6783-9. PubMed ID: 23836085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk.
    Song E; Yu M; Wang Y; Hu W; Cheng D; Swihart MT; Song Y
    Biosens Bioelectron; 2015 Oct; 72():320-5. PubMed ID: 26002016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of a FIA system with amperometric detection by means of a desirability function: determination of sulfadiazine, sulfamethazine and sulfamerazine in milk.
    Reguera C; Ortiz MC; Herrero A; Sarabia LA
    Talanta; 2008 Mar; 75(1):274-83. PubMed ID: 18371879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme-linked immunosorbent assay and colloidal gold immunoassay for sulphamethazine residues in edible animal foods: investigation of the effects of the analytical conditions and the sample matrix on assay performance.
    Wang L; Wang S; Zhang J; Liu J; Zhang Y
    Anal Bioanal Chem; 2008 Mar; 390(6):1619-27. PubMed ID: 18213472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PSA fluoroimmunoassays using anti-PSA ScFv and quantum-dot conjugates.
    Wang Y; Dossey AM; Froude JW; Lubitz S; Tzur D; Semenchenko V; Wishart DS
    Nanomedicine (Lond); 2008 Aug; 3(4):475-83. PubMed ID: 18694310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of sulfamethazine residues in milk by a surface plasmon resonance-based biosensor assay.
    Sternesjö A; Mellgren C; Björck L
    Anal Biochem; 1995 Mar; 226(1):175-81. PubMed ID: 7540367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of sulfamethazine in milk by biosensor immunoassay.
    Gaudin V; Pavy ML
    J AOAC Int; 1999; 82(6):1316-20. PubMed ID: 10589482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HPLC determination of sulfamethazine in milk using surface-imprinted silica synthesized with iniferter technique.
    Su S; Zhang M; Li B; Zhang H; Dong X
    Talanta; 2008 Sep; 76(5):1141-6. PubMed ID: 18761168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive direct enzyme-linked immunosorbent screening assay for the detection of sulfamethazine contamination of animal feeds.
    Dixon-Holland DE; Katz SE
    J Assoc Off Anal Chem; 1991; 74(5):784-9. PubMed ID: 1783586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous detection of sulfamethazine and sulfaquinoxaline using a dual-label time-resolved fluorescence immunoassay.
    Le T; Yan P; Liu J; Wei S
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(7):1264-9. PubMed ID: 23782396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.