These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 17899164)
21. Boosting up gamma-band oscillations leaves target-stimulus in masking out of awareness: Explaining an apparent paradox. Aru J; Bachmann T Neurosci Lett; 2009 Feb; 450(3):351-5. PubMed ID: 19071195 [TBL] [Abstract][Full Text] [Related]
22. Orientation sensitive properties of visually driven neurons in extrastriate area 21a of cat cortex. Harutiunian-Kozak BA; Grigorian GG; Kozak JA; Sharanbekian AB; Sarkisyan GS; Khachvankian DK Arch Ital Biol; 2008 Jun; 146(2):119-30. PubMed ID: 18822799 [TBL] [Abstract][Full Text] [Related]
25. Scene segmentation by spike synchronization in reciprocally connected visual areas. II. Global assemblies and synchronization on larger space and time scales. Knoblauch A; Palm G Biol Cybern; 2002 Sep; 87(3):168-84. PubMed ID: 12200613 [TBL] [Abstract][Full Text] [Related]
26. Amplitude modulation of gamma band oscillations at alpha frequency produced by photic driving. Chorlian DB; Porjesz B; Begleiter H Int J Psychophysiol; 2006 Aug; 61(2):262-78. PubMed ID: 16377013 [TBL] [Abstract][Full Text] [Related]
27. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Fiser J; Chiu C; Weliky M Nature; 2004 Sep; 431(7008):573-8. PubMed ID: 15457262 [TBL] [Abstract][Full Text] [Related]
28. Emergence of orientation-selective inhibition in the primary visual cortex: a Bayes-Markov computational model. Shirazi MN Biol Cybern; 2004 Aug; 91(2):115-30. PubMed ID: 15340852 [TBL] [Abstract][Full Text] [Related]
29. Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Tallon-Baudry C; Bertrand O; Hénaff MA; Isnard J; Fischer C Cereb Cortex; 2005 May; 15(5):654-62. PubMed ID: 15371290 [TBL] [Abstract][Full Text] [Related]
30. Three bands of oscillatory activity in the lateral geniculate nucleus of the cat visual system. Podvigin NF; Bagaeva TV; Boykova EV; Zargarov AA; Podvigina DN; Pöppel E Neurosci Lett; 2004 May; 361(1-3):83-5. PubMed ID: 15135899 [TBL] [Abstract][Full Text] [Related]
31. Low-frequency oscillations arising from competitive interactions between visual stimuli in macaque inferotemporal cortex. Rollenhagen JE; Olson CR J Neurophysiol; 2005 Nov; 94(5):3368-87. PubMed ID: 15928064 [TBL] [Abstract][Full Text] [Related]
32. Spike-rate adaptation and neuronal bursting in a mean-field model of brain activity. Loxley PN; Robinson PA Biol Cybern; 2007 Aug; 97(2):113-22. PubMed ID: 17473929 [TBL] [Abstract][Full Text] [Related]
33. Occipital EEG correlates of conscious awareness when subjective target shine-through and effective visual masking are compared: bifocal early increase in gamma power and speed-up of P1. Aru J; Bachmann T Brain Res; 2009 May; 1271():60-73. PubMed ID: 19328190 [TBL] [Abstract][Full Text] [Related]
34. Interactions between higher and lower visual areas improve shape selectivity of higher level neurons-explaining crowding phenomena. Jehee JF; Roelfsema PR; Deco G; Murre JM; Lamme VA Brain Res; 2007 Jul; 1157():167-76. PubMed ID: 17540349 [TBL] [Abstract][Full Text] [Related]
35. Dynamic causal modeling of evoked responses in EEG and MEG. David O; Kiebel SJ; Harrison LM; Mattout J; Kilner JM; Friston KJ Neuroimage; 2006 May; 30(4):1255-72. PubMed ID: 16473023 [TBL] [Abstract][Full Text] [Related]
36. High frequency oscillations as a correlate of visual perception. Martinovic J; Busch NA Int J Psychophysiol; 2011 Jan; 79(1):32-8. PubMed ID: 20654659 [TBL] [Abstract][Full Text] [Related]
38. Spatial scene representations formed by self-organizing learning in a hippocampal extension of the ventral visual system. Rolls ET; Tromans JM; Stringer SM Eur J Neurosci; 2008 Nov; 28(10):2116-27. PubMed ID: 19046392 [TBL] [Abstract][Full Text] [Related]
39. Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features. Eckhorn R Prog Brain Res; 1994; 102():405-26. PubMed ID: 7800830 [TBL] [Abstract][Full Text] [Related]
40. The representation of Kanizsa illusory contours in the monkey inferior temporal cortex. Sáry G; Köteles K; Kaposvári P; Lenti L; Csifcsák G; Frankó E; Benedek G; Tompa T Eur J Neurosci; 2008 Nov; 28(10):2137-46. PubMed ID: 19046395 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]