These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 17899203)
41. Engineering Escherichia coli to improve culture performance and reduce formation of by-products during recombinant protein production under transient intermittent anaerobic conditions. Lara AR; Vazquez-Limón C; Gosset G; Bolívar F; López-Munguía A; Ramírez OT Biotechnol Bioeng; 2006 Aug; 94(6):1164-75. PubMed ID: 16718678 [TBL] [Abstract][Full Text] [Related]
42. Calorimetric control for high cell density cultivation of a recombinant Escherichia coli strain. Biener R; Steinkämper A; Hofmann J J Biotechnol; 2010 Mar; 146(1-2):45-53. PubMed ID: 20083146 [TBL] [Abstract][Full Text] [Related]
43. High-throughput screening of Hansenula polymorpha clones in the batch compared with the controlled-release fed-batch mode on a small scale. Scheidle M; Jeude M; Dittrich B; Denter S; Kensy F; Suckow M; Klee D; Büchs J FEMS Yeast Res; 2010 Feb; 10(1):83-92. PubMed ID: 19849718 [TBL] [Abstract][Full Text] [Related]
44. Reducing the glucose uptake rate in Escherichia coli affects growth rate but not protein production. Picon A; Teixeira de Mattos MJ; Postma PW Biotechnol Bioeng; 2005 Apr; 90(2):191-200. PubMed ID: 15759256 [TBL] [Abstract][Full Text] [Related]
46. Effect of culture operating conditions on succinate production in a multiphase fed-batch bioreactor using an engineered Escherichia coli strain. Zhu J; Thakker C; San KY; Bennett G Appl Microbiol Biotechnol; 2011 Nov; 92(3):499-508. PubMed ID: 21667087 [TBL] [Abstract][Full Text] [Related]
47. Reduced oxygen supply increases process stability and product yield with recombinant Pichia pastoris. Trentmann O; Khatri NK; Hoffmann F Biotechnol Prog; 2004; 20(6):1766-75. PubMed ID: 15575710 [TBL] [Abstract][Full Text] [Related]
48. High cell-density processes in batch mode of a genetically engineered Escherichia coli strain with minimized overflow metabolism using a pressurized bioreactor. Knabben I; Regestein L; Marquering F; Steinbusch S; Lara AR; Büchs J J Biotechnol; 2010 Oct; 150(1):73-9. PubMed ID: 20630485 [TBL] [Abstract][Full Text] [Related]
49. Modeling of the pyruvate production with Escherichia coli in a fed-batch bioreactor. Zelić B; Vasić-Racki D; Wandrey C; Takors R Bioprocess Biosyst Eng; 2004 Jul; 26(4):249-58. PubMed ID: 15085423 [TBL] [Abstract][Full Text] [Related]
50. Improvement of biomass yield and recombinant gene expression in Escherichia coli by using fructose as the primary carbon source. Aristidou AA; San KY; Bennett GN Biotechnol Prog; 1999; 15(1):140-5. PubMed ID: 9933525 [TBL] [Abstract][Full Text] [Related]
51. High cell density cultivation of recombinant E. coli for hirudin variant 1 production by temperature shift controlled by pUC18-based replicative origin. Matsui T; Sato H; Yamamuro H; Shinzato N; Matsuda H; Misawa S; Sato S Appl Microbiol Biotechnol; 2008 Oct; 80(5):779-83. PubMed ID: 18670771 [TBL] [Abstract][Full Text] [Related]
52. Improvement of heterologous protein productivity by controlling postinduction specific growth rate in recombinant Escherichia coli under control of the PL promoter. Lim HK; Jung KH Biotechnol Prog; 1998; 14(4):548-53. PubMed ID: 9694674 [TBL] [Abstract][Full Text] [Related]
53. High cell density cultivation of recombinant Escherichia coli for hirudin variant 1 production. Matsui T; Sato H; Yamamuro H; Misawa S; Shinzato N; Matsuda H; Takahashi J; Sato S J Biotechnol; 2008 Mar; 134(1-2):88-92. PubMed ID: 18294719 [TBL] [Abstract][Full Text] [Related]
54. Influence of induction and operation mode on recombinant rhamnulose 1-phosphate aldolase production by Escherichia coli using the T5 promoter. Vidal L; Ferrer P; Alvaro G; Benaiges MD; Caminal G J Biotechnol; 2005 Jul; 118(1):75-87. PubMed ID: 15908029 [TBL] [Abstract][Full Text] [Related]
55. [Research of the feeding strategy in the fermentation of recombinant human fibreblast growth factor mutant]. Yuan H; Li XK; Yang SL Sheng Wu Gong Cheng Xue Bao; 2006 Mar; 22(2):322-7. PubMed ID: 16607964 [TBL] [Abstract][Full Text] [Related]
56. Production of isopropanol by metabolically engineered Escherichia coli. Jojima T; Inui M; Yukawa H Appl Microbiol Biotechnol; 2008 Jan; 77(6):1219-24. PubMed ID: 17987288 [TBL] [Abstract][Full Text] [Related]
57. Enhancement of plasmid DNA yields during fed-batch culture of a fruR-knockout Escherichia coli strain. Ow DS; Yap MG; Oh SK Biotechnol Appl Biochem; 2009 Jan; 52(Pt 1):53-9. PubMed ID: 18380624 [TBL] [Abstract][Full Text] [Related]
58. Fed-batch culture of Escherichia coli for L-valine production based on in silico flux response analysis. Park JH; Kim TY; Lee KH; Lee SY Biotechnol Bioeng; 2011 Apr; 108(4):934-46. PubMed ID: 21404266 [TBL] [Abstract][Full Text] [Related]
59. [High cell density fed-batch culture of E.coli expressing rhVEGF121]. Hu ZM; Ma L; Zhou MQ; Meng MJ; Yang JZ; Wang XN Di Yi Jun Yi Da Xue Xue Bao; 2005 Mar; 25(3):267-9. PubMed ID: 15771989 [TBL] [Abstract][Full Text] [Related]
60. Industrial control of recombinant E. coli fed-batch culture: new perspectives on traditional controlled variables. Johnston W; Cord-Ruwisch R; Cooney MJ Bioprocess Biosyst Eng; 2002 Jun; 25(2):111-20. PubMed ID: 14505011 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]