These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17899397)

  • 1. Comparative genome organization reveals a single copy of CBF in the freezing tolerant crucifer Thlaspi arvense.
    Zhou N; Robinson SJ; Huebert T; Bate NJ; Parkin IA
    Plant Mol Biol; 2007 Nov; 65(5):693-705. PubMed ID: 17899397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant's response to cold stress.
    Sharma N; Cram D; Huebert T; Zhou N; Parkin IA
    Plant Mol Biol; 2007 Jan; 63(2):171-84. PubMed ID: 16972165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species.
    Jaglo KR; Kleff S; Amundsen KL; Zhang X; Haake V; Zhang JZ; Deits T; Thomashow MF
    Plant Physiol; 2001 Nov; 127(3):910-7. PubMed ID: 11706173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A C-repeat binding factor transcriptional activator (CBF/DREB1) from European bilberry (Vaccinium myrtillus) induces freezing tolerance when expressed in Arabidopsis thaliana.
    Oakenfull RJ; Baxter R; Knight MR
    PLoS One; 2013; 8(1):e54119. PubMed ID: 23349799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana.
    McKhann HI; Gery C; Bérard A; Lévêque S; Zuther E; Hincha DK; De Mita S; Brunel D; Téoulé E
    BMC Plant Biol; 2008 Oct; 8():105. PubMed ID: 18922165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis.
    Zhang X; Fowler SG; Cheng H; Lou Y; Rhee SY; Stockinger EJ; Thomashow MF
    Plant J; 2004 Sep; 39(6):905-19. PubMed ID: 15341633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes.
    Pennycooke JC; Cheng H; Stockinger EJ
    Plant Physiol; 2008 Mar; 146(3):1242-54. PubMed ID: 18218976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana.
    Zhuang L; Yuan X; Chen Y; Xu B; Yang Z; Huang B
    PLoS One; 2015; 10(7):e0132928. PubMed ID: 26177510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana.
    Carvallo MA; Pino MT; Jeknic Z; Zou C; Doherty CJ; Shiu SH; Chen TH; Thomashow MF
    J Exp Bot; 2011 Jul; 62(11):3807-19. PubMed ID: 21511909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants.
    Peng Y; Reyes JL; Wei H; Yang Y; Karlson D; Covarrubias AA; Krebs SL; Fessehaie A; Arora R
    Physiol Plant; 2008 Dec; 134(4):583-97. PubMed ID: 19000195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. JcCBF2 gene from Jatropha curcas improves freezing tolerance of Arabidopsis thaliana during the early stage of stress.
    Wang L; Gao J; Qin X; Shi X; Luo L; Zhang G; Yu H; Li C; Hu M; Liu Q; Xu Y; Chen F
    Mol Biol Rep; 2015 May; 42(5):937-45. PubMed ID: 25433432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes.
    Hammond JP; Bowen HC; White PJ; Mills V; Pyke KA; Baker AJ; Whiting SN; May ST; Broadley MR
    New Phytol; 2006; 170(2):239-60. PubMed ID: 16608451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of glycine-rich RNA-binding proteins in Brassica napus under stress conditions.
    Kim MK; Jung HJ; Kim DH; Kang H
    Physiol Plant; 2012 Nov; 146(3):297-307. PubMed ID: 22462633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes.
    Gehan MA; Park S; Gilmour SJ; An C; Lee CM; Thomashow MF
    Plant J; 2015 Nov; 84(4):682-93. PubMed ID: 26369909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A thiocyanate-forming protein generates multiple products upon allylglucosinolate breakdown in Thlaspi arvense.
    Kuchernig JC; Backenköhler A; Lübbecke M; Burow M; Wittstock U
    Phytochemistry; 2011 Oct; 72(14-15):1699-709. PubMed ID: 21783213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance.
    Dalal M; Tayal D; Chinnusamy V; Bansal KC
    J Biotechnol; 2009 Jan; 139(2):137-45. PubMed ID: 19014980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A draft genome of field pennycress (Thlaspi arvense) provides tools for the domestication of a new winter biofuel crop.
    Dorn KM; Fankhauser JD; Wyse DL; Marks MD
    DNA Res; 2015 Apr; 22(2):121-31. PubMed ID: 25632110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of genes encoding ABI1 protein phosphatases in the response of Brassica napus L. to drought stress.
    Babula-Skowrońska D; Ludwików A; Cieśla A; Olejnik A; Cegielska-Taras T; Bartkowiak-Broda I; Sadowski J
    Plant Mol Biol; 2015 Jul; 88(4-5):445-57. PubMed ID: 26059040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance.
    Gong Z; Lee H; Xiong L; Jagendorf A; Stevenson B; Zhu JK
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11507-12. PubMed ID: 12165572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and biochemical characterization of an aminoalcoholphosphotransferase (AAPT1) from Brassica napus: effects of low temperature and abscisic acid treatments on AAPT expression in Arabidopsis plants and effects of over-expression of BnAAPT1 in transgenic Arabidopsis.
    Qi Q; Huang YF; Cutler AJ; Abrams SR; Taylor DC
    Planta; 2003 Aug; 217(4):547-58. PubMed ID: 12739150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.