These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 17899606)

  • 1. Analyzing equilibrium water exchange between myocardial tissue compartments using dynamical two-dimensional correlation experiments combined with manganese-enhanced relaxography.
    Seland JG; Bruvold M; Brurok H; Jynge P; Krane J
    Magn Reson Med; 2007 Oct; 58(4):674-86. PubMed ID: 17899606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese ions as intracellular contrast agents: proton relaxation and calcium interactions in rat myocardium.
    Nordhøy W; Anthonsen HW; Bruvold M; Jynge P; Krane J; Brurok H
    NMR Biomed; 2003 Apr; 16(2):82-95. PubMed ID: 12730949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic water changes in excised rat myocardium assessed by continuous distribution of T1 and T2.
    Bruvold M; Seland JG; Brurok H; Jynge P
    Magn Reson Med; 2007 Sep; 58(3):442-7. PubMed ID: 17763343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that both fast and slow water ADC components arise from intracellular space.
    Sehy JV; Ackerman JJ; Neil JJ
    Magn Reson Med; 2002 Nov; 48(5):765-70. PubMed ID: 12417990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular manganese ions provide strong T1 relaxation in rat myocardium.
    Nordhøy W; Anthonsen HW; Bruvold M; Brurok H; Skarra S; Krane J; Jynge P
    Magn Reson Med; 2004 Sep; 52(3):506-14. PubMed ID: 15334568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of water compartments in rat myocardium using combined D-T1 and T1-T2 experiments.
    Seland JG; Bruvold M; Anthonsen H; Brurok H; Nordhøy W; Jynge P; Krane J
    Magn Reson Imaging; 2005 Feb; 23(2):353-4. PubMed ID: 15833645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compartmentation of intracellular water in multicellular tumor spheroids: diffusion and relaxation NMR.
    Smouha E; Neeman M
    Magn Reson Med; 2001 Jul; 46(1):68-77. PubMed ID: 11443712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-mono-exponential attenuation of water and N-acetyl aspartate signals due to diffusion in brain tissue.
    Assaf Y; Cohen Y
    J Magn Reson; 1998 Mar; 131(1):69-85. PubMed ID: 9533908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water signal attenuation in diffusion-weighted 1H NMR experiments during cerebral ischemia: influence of intracellular restrictions, extracellular tortuosity, and exchange.
    Pfeuffer J; Dreher W; Sykova E; Leibfritz D
    Magn Reson Imaging; 1998 Nov; 16(9):1023-32. PubMed ID: 9839986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unified magnetic resonance imaging pharmacokinetic theory: intravascular and extracellular contrast reagents.
    Li X; Rooney WD; Springer CS
    Magn Reson Med; 2005 Dec; 54(6):1351-9. PubMed ID: 16247739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation of the relaxographic "shutter-speed" for transcytolemmal water exchange affects the CR bolus-tracking curve shape.
    Yankeelov TE; Rooney WD; Li X; Springer CS
    Magn Reson Med; 2003 Dec; 50(6):1151-69. PubMed ID: 14648563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion in compartmental systems. II. Diffusion-weighted measurements of rat brain tissue in vivo and postmortem at very large b-values.
    Meier C; Dreher W; Leibfritz D
    Magn Reson Med; 2003 Sep; 50(3):510-4. PubMed ID: 12939758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction between apparent diffusion coefficients and transverse relaxation rates of human brain metabolites and water studied by diffusion-weighted spectroscopy at 7 T.
    Branzoli F; Ercan E; Webb A; Ronen I
    NMR Biomed; 2014 May; 27(5):495-506. PubMed ID: 24706330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative pancreatic β cell MRI using manganese-enhanced Look-Locker imaging and two-site water exchange analysis.
    Antkowiak PF; Vandsburger MH; Epstein FH
    Magn Reson Med; 2012 Jun; 67(6):1730-9. PubMed ID: 22189705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separating changes in the intra- and extracellular water apparent diffusion coefficient following focal cerebral ischemia in the rat brain.
    Silva MD; Omae T; Helmer KG; Li F; Fisher M; Sotak CH
    Magn Reson Med; 2002 Nov; 48(5):826-37. PubMed ID: 12417997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR characteristics of "visible" intracellular myocardial potassium in perfused rat hearts.
    Burstein D; Litt HI; Fossel ET
    Magn Reson Med; 1989 Jan; 9(1):66-78. PubMed ID: 2709996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium water exchange between the intra- and extracellular spaces of mammalian brain.
    Quirk JD; Bretthorst GL; Duong TQ; Snyder AZ; Springer CS; Ackerman JJ; Neil JJ
    Magn Reson Med; 2003 Sep; 50(3):493-9. PubMed ID: 12939756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-diffusion of water in multicellular spheroids measured by magnetic resonance microimaging.
    Neeman M; Jarrett KA; Sillerud LO; Freyer JP
    Cancer Res; 1991 Aug; 51(15):4072-9. PubMed ID: 1855222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water exchange in plant tissue studied by proton NMR in the presence of paramagnetic centers.
    Bacić G; Ratković S
    Biophys J; 1984 Apr; 45(4):767-76. PubMed ID: 6426539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biexponential parameterization of diffusion and T2 relaxation decay curves in a rat muscle edema model: decay curve components and water compartments.
    Ababneh Z; Beloeil H; Berde CB; Gambarota G; Maier SE; Mulkern RV
    Magn Reson Med; 2005 Sep; 54(3):524-31. PubMed ID: 16086363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.