These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17900113)

  • 1. Organocatalytic stereoselective ring-opening polymerization of lactide with dimeric phosphazene bases.
    Zhang L; Nederberg F; Messman JM; Pratt RC; Hedrick JL; Wade CG
    J Am Chem Soc; 2007 Oct; 129(42):12610-1. PubMed ID: 17900113
    [No Abstract]   [Full Text] [Related]  

  • 2. Ring opening polymerization of L-lactide initiated by creatinine.
    Wang C; Li H; Zhao X
    Biomaterials; 2004 Dec; 25(27):5797-801. PubMed ID: 15172491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An activated equivalent of lactide toward organocatalytic ring-opening polymerization.
    Thillaye du Boullay O; Marchal E; Martin-Vaca B; Cossío FP; Bourissou D
    J Am Chem Soc; 2006 Dec; 128(51):16442-3. PubMed ID: 17177360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereocontrolled ring-opening polymerisation of lactide.
    Stanford MJ; Dove AP
    Chem Soc Rev; 2010 Feb; 39(2):486-94. PubMed ID: 20111773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphazene Bases as Organocatalysts for Ring-Opening Polymerization of Cyclic Esters.
    Liu S; Ren C; Zhao N; Shen Y; Li Z
    Macromol Rapid Commun; 2018 Dec; 39(24):e1800485. PubMed ID: 30276913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different mechanisms at different temperatures for the ring-opening polymerization of lactide catalyzed by binuclear magnesium and zinc alkoxides.
    Sun Y; Cui Y; Xiong J; Dai Z; Tang N; Wu J
    Dalton Trans; 2015 Oct; 44(37):16383-91. PubMed ID: 26308730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Branched poly(lactide) synthesized by enzymatic polymerization: effects of molecular branches and stereochemistry on enzymatic degradation and alkaline hydrolysis.
    Numata K; Srivastava RK; Finne-Wistrand A; Albertsson AC; Doi Y; Abe H
    Biomacromolecules; 2007 Oct; 8(10):3115-25. PubMed ID: 17722879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tandem Lewis Pair Polymerization and Organocatalytic Ring-Opening Polymerization for Synthesizing Block and Brush Copolymers.
    Sun XY; Ren WM; Liu SJ; Jia YB; Wang YM; Lu XB
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29466304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protease-catalyzed oligomerization and hydrolysis of alkyl lactates involving L-enantioselective deacylation step.
    Ohara H; Nishioka E; Yamaguchi S; Kawai F; Kobayashi S
    Biomacromolecules; 2011 Oct; 12(10):3833-7. PubMed ID: 21870833
    [No Abstract]   [Full Text] [Related]  

  • 10. Controlled ring-opening polymerization of lactide and glycolide.
    Dechy-Cabaret O; Martin-Vaca B; Bourissou D
    Chem Rev; 2004 Dec; 104(12):6147-76. PubMed ID: 15584698
    [No Abstract]   [Full Text] [Related]  

  • 11. Readily controllable step-growth polymerization method for poly(lactic acid) copolymers having a high glass transition temperature.
    Inkinen S; Stolt M; Södergård A
    Biomacromolecules; 2010 May; 11(5):1196-201. PubMed ID: 20345130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoblock poly(lactic acid): synthesis via solid-state polycondensation of a stereocomplexed mixture of poly(L-lactic acid) and poly(D-lactic acid).
    Fukushima K; Furuhashi Y; Sogo K; Miura S; Kimura Y
    Macromol Biosci; 2005 Jan; 5(1):21-9. PubMed ID: 15633160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organocatalytic ring opening polymerization of trimethylene carbonate.
    Nederberg F; Lohmeijer BG; Leibfarth F; Pratt RC; Choi J; Dove AP; Waymouth RM; Hedrick JL
    Biomacromolecules; 2007 Jan; 8(1):153-60. PubMed ID: 17206801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile synthesis of functional biodegradable polymers by ring-opening polymerization and microwave-assisted click reaction.
    Yan L; Ding J; Qi R; Yang L; Hu X; Huang Y; Jing X
    J Control Release; 2011 Nov; 152 Suppl 1():e249-50. PubMed ID: 22195889
    [No Abstract]   [Full Text] [Related]  

  • 15. Synthesis and gelation properties of PEG-PLA-PEG triblock copolymers obtained by coupling monohydroxylated PEG-PLA with adipoyl chloride.
    Li F; Li S; Ghzaoui AE; Nouailhas H; Zhuo R
    Langmuir; 2007 Feb; 23(5):2778-83. PubMed ID: 17243742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipase catalyzed copolymerization of 3(S)-isopropylmorpholine-2,5-dione and D,L-lactide.
    Feng Y; Klee D; Höcker H
    Macromol Biosci; 2004 Jun; 4(6):587-90. PubMed ID: 15468252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot syntheses, coordination, and characterization of application-specific biodegradable ligand-polymers.
    Saatchi K; Häfeli UO
    Dalton Trans; 2007 Oct; (39):4439-45. PubMed ID: 17909655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-Phe end-capped poly(L-lactide) as macroinitiator for the synthesis of poly(L-lactide)-B-poly(L-lysine) block copolymer.
    Fan Y; Chen G; Tanaka J; Tateishi T
    Biomacromolecules; 2005; 6(6):3051-6. PubMed ID: 16283726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased polymer length of oligopeptide-substituted polynorbornenes with LiCl.
    Roberts KS; Sampson NS
    J Org Chem; 2003 Mar; 68(5):2020-3. PubMed ID: 12608828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replacing tin in lactide polymerization: design of highly active germanium-based catalysts.
    Guo J; Haquette P; Martin J; Salim K; Thomas CM
    Angew Chem Int Ed Engl; 2013 Dec; 52(51):13584-7. PubMed ID: 24281988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.