BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 17900149)

  • 1. Reductase domain of Drosophila melanogaster nitric-oxide synthase: redox transformations, regulation, and similarity to mammalian homologues.
    Ray SS; Sengupta R; Tiso M; Haque MM; Sahoo R; Konas DW; Aulak K; Regulski M; Tully T; Stuehr DJ; Ghosh S
    Biochemistry; 2007 Oct; 46(42):11865-73. PubMed ID: 17900149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase.
    Knight K; Scrutton NS
    Biochem J; 2002 Oct; 367(Pt 1):19-30. PubMed ID: 12079493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase.
    Yamamoto K; Kimura S; Shiro Y; Iyanagi T
    Arch Biochem Biophys; 2005 Aug; 440(1):65-78. PubMed ID: 16009330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry.
    Wolthers KR; Scrutton NS
    Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygenase domain of Drosophila melanogaster nitric oxide synthase: unique kinetic parameters enable a more efficient NO release.
    Ray SS; Tejero J; Wang ZQ; Dutta T; Bhattacharjee A; Regulski M; Tully T; Ghosh S; Stuehr DJ
    Biochemistry; 2007 Oct; 46(42):11857-64. PubMed ID: 17900148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain.
    Iyanagi T
    Biochem Biophys Res Commun; 2005 Dec; 338(1):520-8. PubMed ID: 16125667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Asp1393 in catalysis, flavin reduction, NADP(H) binding, FAD thermodynamics, and regulation of the nNOS flavoprotein.
    Konas DW; Takaya N; Sharma M; Stuehr DJ
    Biochemistry; 2006 Oct; 45(41):12596-609. PubMed ID: 17029414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase.
    Garnaud PE; Koetsier M; Ost TW; Daff S
    Biochemistry; 2004 Aug; 43(34):11035-44. PubMed ID: 15323562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Azo reduction of methyl red by neuronal nitric oxide synthase: the important role of FMN in catalysis.
    Miyajima M; Sagami I; Daff S; Taiko Migita C; Shimizu T
    Biochem Biophys Res Commun; 2000 Sep; 275(3):752-8. PubMed ID: 10973794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human neuronal nitric oxide synthase can catalyze one-electron reduction of adriamycin: role of flavin domain.
    Fu J; Yamamoto K; Guan ZW; Kimura S; Iyanagi T
    Arch Biochem Biophys; 2004 Jul; 427(2):180-7. PubMed ID: 15196992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer is activated by calmodulin in the flavin domain of human neuronal nitric oxide synthase.
    Guan ZW; Iyanagi T
    Arch Biochem Biophys; 2003 Apr; 412(1):65-76. PubMed ID: 12646269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium binding sites of calmodulin and electron transfer by neuronal nitric oxide synthase.
    Stevens-Truss R; Beckingham K; Marletta MA
    Biochemistry; 1997 Oct; 36(40):12337-45. PubMed ID: 9315874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of the domain-domain interface to the catalytic action of the NO synthase reductase domain.
    Welland A; Garnaud PE; Kitamura M; Miles CS; Daff S
    Biochemistry; 2008 Sep; 47(37):9771-80. PubMed ID: 18717591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of hydride transfer to flavin adenine dinucleotide in neuronal nitric oxide synthase reductase domain: geometric relationship between the nicotinamide and isoalloxazine rings.
    Miller RT; Hinck AP
    Arch Biochem Biophys; 2001 Nov; 395(1):129-35. PubMed ID: 11673874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic studies on the intramolecular one-electron transfer between the two flavins in the human endothelial NOS reductase domain.
    Nishino Y; Yamamoto K; Kimura S; Kikuchi A; Shiro Y; Iyanagi T
    Arch Biochem Biophys; 2007 Sep; 465(1):254-65. PubMed ID: 17610838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms.
    Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ
    Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding and activation of nitric oxide synthase isozymes by calmodulin EF hand pairs.
    Spratt DE; Newman E; Mosher J; Ghosh DK; Salerno JC; Guillemette JG
    FEBS J; 2006 Apr; 273(8):1759-71. PubMed ID: 16623711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of C415 mutants of neuronal nitric oxide synthase.
    Richards MK; Clague MJ; Marletta MA
    Biochemistry; 1996 Jun; 35(24):7772-80. PubMed ID: 8672477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-binding sites of calmodulin and electron transfer by inducible nitric oxide synthase.
    Gribovskaja I; Brownlow KC; Dennis SJ; Rosko AJ; Marletta MA; Stevens-Truss R
    Biochemistry; 2005 May; 44(20):7593-601. PubMed ID: 15896003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.