These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 17900572)
1. Changing the substrate specificity of a chitooligosaccharide oxidase from Fusarium graminearum by model-inspired site-directed mutagenesis. Heuts DP; Janssen DB; Fraaije MW FEBS Lett; 2007 Oct; 581(25):4905-9. PubMed ID: 17900572 [TBL] [Abstract][Full Text] [Related]
2. Expanding the substrate scope of chitooligosaccharide oxidase from Fusarium graminearum by structure-inspired mutagenesis. Ferrari AR; Lee M; Fraaije MW Biotechnol Bioeng; 2015 Jun; 112(6):1074-80. PubMed ID: 25565162 [TBL] [Abstract][Full Text] [Related]
3. The role of double covalent flavin binding in chito-oligosaccharide oxidase from Fusarium graminearum. Heuts DP; Winter RT; Damsma GE; Janssen DB; Fraaije MW Biochem J; 2008 Jul; 413(1):175-83. PubMed ID: 18352858 [TBL] [Abstract][Full Text] [Related]
4. Mutational analysis of the oligosaccharide recognition site at the active site of Escherichia coli maltodextrin phosphorylase. Drueckes P; Boeck B; Palm D; Schinzel R Biochemistry; 1996 May; 35(21):6727-34. PubMed ID: 8639623 [TBL] [Abstract][Full Text] [Related]
5. [Broader substrate specifity of Candida parapsilosis SCR II for catalyzing acetophenone derivatives by site-directed mutagenesis]. Zhang B; Zhang R; Wang S; Xu Y Wei Sheng Wu Xue Bao; 2011 Jun; 51(6):783-8. PubMed ID: 21866703 [TBL] [Abstract][Full Text] [Related]
6. Altered substrate specificity of the gluco-oligosaccharide oxidase from Acremonium strictum. Foumani M; Vuong TV; Master ER Biotechnol Bioeng; 2011 Oct; 108(10):2261-9. PubMed ID: 21455933 [TBL] [Abstract][Full Text] [Related]
7. Site-directed mutagenesis of selected residues at the active site of aryl-alcohol oxidase, an H2O2-producing ligninolytic enzyme. Ferreira P; Ruiz-Dueñas FJ; Martínez MJ; van Berkel WJ; Martínez AT FEBS J; 2006 Nov; 273(21):4878-88. PubMed ID: 16999821 [TBL] [Abstract][Full Text] [Related]
8. Role of Glu312 in binding and positioning of the substrate for the hydride transfer reaction in choline oxidase. Quaye O; Lountos GT; Fan F; Orville AM; Gadda G Biochemistry; 2008 Jan; 47(1):243-56. PubMed ID: 18072756 [TBL] [Abstract][Full Text] [Related]
9. Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase. Ferreira P; Hernández-Ortega A; Lucas F; Carro J; Herguedas B; Borrelli KW; Guallar V; Martínez AT; Medina M FEBS J; 2015 Aug; 282(16):3091-106. PubMed ID: 25639975 [TBL] [Abstract][Full Text] [Related]
10. Structure and function of 2,3-dimethylmalate lyase, a PEP mutase/isocitrate lyase superfamily member. Narayanan B; Niu W; Joosten HJ; Li Z; Kuipers RK; Schaap PJ; Dunaway-Mariano D; Herzberg O J Mol Biol; 2009 Feb; 386(2):486-503. PubMed ID: 19133276 [TBL] [Abstract][Full Text] [Related]
11. Alteration of substrate specificity of fructosyl-amino acid oxidase from Fusarium oxysporum. Fujiwara M; Sumitani J; Koga S; Yoshioka I; Kouzuma T; Imamura S; Kawaguchi T; Arai M Appl Microbiol Biotechnol; 2007 Mar; 74(4):813-9. PubMed ID: 17160532 [TBL] [Abstract][Full Text] [Related]
12. On the role of histidine 351 in the reaction of alcohol oxidation catalyzed by choline oxidase. Rungsrisuriyachai K; Gadda G Biochemistry; 2008 Jul; 47(26):6762-9. PubMed ID: 18540638 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the structure and substrate scope of chitooligosaccharide oxidase reveals high affinity for C2-modified glucosamines. Savino S; Jensen S; Terwisscha van Scheltinga A; Fraaije MW FEBS Lett; 2020 Sep; 594(17):2819-2828. PubMed ID: 32491191 [TBL] [Abstract][Full Text] [Related]
14. Motif-based search for a novel fructosyl peptide oxidase from genome databases. Kim S; Ferri S; Tsugawa W; Mori K; Sode K Biotechnol Bioeng; 2010 Jun; 106(3):358-66. PubMed ID: 20198658 [TBL] [Abstract][Full Text] [Related]
15. Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase. Fernández IS; Ruíz-Dueñas FJ; Santillana E; Ferreira P; Martínez MJ; Martínez AT; Romero A Acta Crystallogr D Biol Crystallogr; 2009 Nov; 65(Pt 11):1196-205. PubMed ID: 19923715 [TBL] [Abstract][Full Text] [Related]
16. How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates. Galli C; Gentili P; Jolivalt C; Madzak C; Vadalà R Appl Microbiol Biotechnol; 2011 Jul; 91(1):123-31. PubMed ID: 21468703 [TBL] [Abstract][Full Text] [Related]
17. Probing the promiscuous active site of myo-inositol dehydrogenase using synthetic substrates, homology modeling, and active site modification. Daniellou R; Zheng H; Langill DM; Sanders DA; Palmer DR Biochemistry; 2007 Jun; 46(25):7469-77. PubMed ID: 17539607 [TBL] [Abstract][Full Text] [Related]
18. Role of active-site residues of dispersin B, a biofilm-releasing beta-hexosaminidase from a periodontal pathogen, in substrate hydrolysis. Manuel SG; Ragunath C; Sait HB; Izano EA; Kaplan JB; Ramasubbu N FEBS J; 2007 Nov; 274(22):5987-99. PubMed ID: 17949435 [TBL] [Abstract][Full Text] [Related]
19. Role of glycine 81 in (S)-mandelate dehydrogenase from Pseudomonas putida in substrate specificity and oxidase activity. Dewanti AR; Xu Y; Mitra B Biochemistry; 2004 Aug; 43(33):10692-700. PubMed ID: 15311930 [TBL] [Abstract][Full Text] [Related]
20. Mutational analysis of endoxylanases XylA and XylB from the phytopathogen Fusarium graminearum reveals comprehensive insights into their inhibitor insensitivity. Beliën T; Van Campenhout S; Van Acker M; Robben J; Courtin CM; Delcour JA; Volckaert G Appl Environ Microbiol; 2007 Jul; 73(14):4602-8. PubMed ID: 17513587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]