These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 17900617)
1. Predicting allosteric communication in myosin via a pathway of conserved residues. Tang S; Liao JC; Dunn AR; Altman RB; Spudich JA; Schmidt JP J Mol Biol; 2007 Nov; 373(5):1361-73. PubMed ID: 17900617 [TBL] [Abstract][Full Text] [Related]
2. Simulations of the myosin II motor reveal a nucleotide-state sensing element that controls the recovery stroke. Koppole S; Smith JC; Fischer S J Mol Biol; 2006 Aug; 361(3):604-16. PubMed ID: 16859703 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic insights into the active site and allosteric communication pathways in human nonmuscle myosin-2C. Chinthalapudi K; Heissler SM; Preller M; Sellers JR; Manstein DJ Elife; 2017 Dec; 6():. PubMed ID: 29256864 [TBL] [Abstract][Full Text] [Related]
4. The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor. Mesentean S; Koppole S; Smith JC; Fischer S J Mol Biol; 2007 Mar; 367(2):591-602. PubMed ID: 17275022 [TBL] [Abstract][Full Text] [Related]
5. Extensive conformational transitions are required to turn on ATP hydrolysis in myosin. Yang Y; Yu H; Cui Q J Mol Biol; 2008 Sep; 381(5):1407-20. PubMed ID: 18619975 [TBL] [Abstract][Full Text] [Related]
6. Structural mechanism of the recovery stroke in the myosin molecular motor. Fischer S; Windshügel B; Horak D; Holmes KC; Smith JC Proc Natl Acad Sci U S A; 2005 May; 102(19):6873-8. PubMed ID: 15863618 [TBL] [Abstract][Full Text] [Related]
7. Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. Yang Y; Gourinath S; Kovács M; Nyitray L; Reutzel R; Himmel DM; O'Neall-Hennessey E; Reshetnikova L; Szent-Györgyi AG; Brown JH; Cohen C Structure; 2007 May; 15(5):553-64. PubMed ID: 17502101 [TBL] [Abstract][Full Text] [Related]
8. The effect of F-actin on the relay helix position of myosin II, as revealed by tryptophan fluorescence, and its implications for mechanochemical coupling. Conibear PB; Málnási-Csizmadia A; Bagshaw CR Biochemistry; 2004 Dec; 43(49):15404-17. PubMed ID: 15581352 [TBL] [Abstract][Full Text] [Related]
9. Chemical decoupling of ATPase activation and force production from the contractile cycle in myosin by steric hindrance of lever-arm movement. Muhlrad A; Peyser YM; Nili M; Ajtai K; Reisler E; Burghardt TP Biophys J; 2003 Feb; 84(2 Pt 1):1047-56. PubMed ID: 12547786 [TBL] [Abstract][Full Text] [Related]
10. Mechanism and specificity of pentachloropseudilin-mediated inhibition of myosin motor activity. Chinthalapudi K; Taft MH; Martin R; Heissler SM; Preller M; Hartmann FK; Brandstaetter H; Kendrick-Jones J; Tsiavaliaris G; Gutzeit HO; Fedorov R; Buss F; Knölker HJ; Coluccio LM; Manstein DJ J Biol Chem; 2011 Aug; 286(34):29700-8. PubMed ID: 21680745 [TBL] [Abstract][Full Text] [Related]
11. Experimental investigation of the seesaw mechanism of the relay region that moves the myosin lever arm. Kintses B; Yang Z; Málnási-Csizmadia A J Biol Chem; 2008 Dec; 283(49):34121-8. PubMed ID: 18854311 [TBL] [Abstract][Full Text] [Related]
12. The structural coupling between ATPase activation and recovery stroke in the myosin II motor. Koppole S; Smith JC; Fischer S Structure; 2007 Jul; 15(7):825-37. PubMed ID: 17637343 [TBL] [Abstract][Full Text] [Related]
13. Predicting allosteric switches in myosins. Kirshenbaum K; Young M; Highsmith S Protein Sci; 1999 Sep; 8(9):1806-15. PubMed ID: 10493582 [TBL] [Abstract][Full Text] [Related]
14. Rigor to post-rigor transition in myosin V: link between the dynamics and the supporting architecture. Tehver R; Thirumalai D Structure; 2010 Mar; 18(4):471-81. PubMed ID: 20399184 [TBL] [Abstract][Full Text] [Related]
15. Mode coupling points to functionally important residues in myosin II. Varol O; Yuret D; Erman B; Kabakçıoğlu A Proteins; 2014 Sep; 82(9):1777-86. PubMed ID: 24677138 [TBL] [Abstract][Full Text] [Related]
16. Selective perturbation of the myosin recovery stroke by point mutations at the base of the lever arm affects ATP hydrolysis and phosphate release. Málnási-Csizmadia A; Tóth J; Pearson DS; Hetényi C; Nyitray L; Geeves MA; Bagshaw CR; Kovács M J Biol Chem; 2007 Jun; 282(24):17658-64. PubMed ID: 17449872 [TBL] [Abstract][Full Text] [Related]
17. Structural rearrangements in the active site of smooth-muscle myosin. Robertson CI; Gaffney DP; Chrin LR; Berger CL Biophys J; 2005 Sep; 89(3):1882-92. PubMed ID: 15951390 [TBL] [Abstract][Full Text] [Related]
18. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Suzuki Y; Yasunaga T; Ohkura R; Wakabayashi T; Sutoh K Nature; 1998 Nov; 396(6709):380-3. PubMed ID: 9845076 [TBL] [Abstract][Full Text] [Related]
19. Mutations in the relay loop region result in dominant-negative inhibition of myosin II function in Dictyostelium. Tsiavaliaris G; Fujita-Becker S; Batra R; Levitsky DI; Kull FJ; Geeves MA; Manstein DJ EMBO Rep; 2002 Nov; 3(11):1099-105. PubMed ID: 12393751 [TBL] [Abstract][Full Text] [Related]
20. Detection of the swings of the lever arm of a myosin motor by fluorescence resonance energy transfer of green and blue fluorescent proteins. Suzuki Y Methods; 2000 Dec; 22(4):355-63. PubMed ID: 11133241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]