These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 17900702)

  • 1. Neuromodulation and developmental plasticity in the locomotor system of anuran amphibians during metamorphosis.
    Sillar KT; Combes D; Ramanathan S; Molinari M; Simmers J
    Brain Res Rev; 2008 Jan; 57(1):94-102. PubMed ID: 17900702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and neuromodulation of spinal locomotor networks in the metamorphosing frog.
    Rauscent A; Le Ray D; Cabirol-Pol MJ; Sillar KT; Simmers J; Combes D
    J Physiol Paris; 2006; 100(5-6):317-27. PubMed ID: 17629683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental and regional expression of NADPH-diaphorase/nitric oxide synthase in spinal cord neurons correlates with the emergence of limb motor networks in metamorphosing Xenopus laevis.
    Ramanathan S; Combes D; Molinari M; Simmers J; Sillar KT
    Eur J Neurosci; 2006 Oct; 24(7):1907-22. PubMed ID: 17067294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental segregation of spinal networks driving axial- and hindlimb-based locomotion in metamorphosing Xenopus laevis.
    Combes D; Merrywest SD; Simmers J; Sillar KT
    J Physiol; 2004 Aug; 559(Pt 1):17-24. PubMed ID: 15235079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metamorphosis-induced changes in the coupling of spinal thoraco-lumbar motor outputs during swimming in Xenopus laevis.
    Beyeler A; Métais C; Combes D; Simmers J; Le Ray D
    J Neurophysiol; 2008 Sep; 100(3):1372-83. PubMed ID: 18596184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide synthase expression and cell changes in dorsal root ganglia and spinal dorsal horn of developing and adult Rana esculenta indicate a role of nitric oxide in limb metamorphosis.
    Cristino L; Florenzano F; Bentivoglio M; Guglielmotti V
    J Comp Neurol; 2004 May; 472(4):423-36. PubMed ID: 15065117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xenopus laevis: an ideal experimental model for studying the developmental dynamics of neural network assembly and sensory-motor computations.
    Straka H; Simmers J
    Dev Neurobiol; 2012 Apr; 72(4):649-63. PubMed ID: 21834082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive plasticity of spino-extraocular motor coupling during locomotion in metamorphosing Xenopus laevis.
    von Uckermann G; Lambert FM; Combes D; Straka H; Simmers J
    J Exp Biol; 2016 Apr; 219(Pt 8):1110-21. PubMed ID: 27103674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis.
    Beyeler A; Rao G; Ladepeche L; Jacques A; Simmers J; Le Ray D
    PLoS One; 2013; 8(8):e71013. PubMed ID: 23951071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of the lamprey pattern generator for locomotion.
    Cohen AH; Dobrov TA; Li G; Kiemel T; Baker MT
    J Neurobiol; 1990 Oct; 21(7):958-69. PubMed ID: 2258729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of anuran locomotion: ethological and neurophysiological considerations.
    Stehouwer DJ
    J Neurobiol; 1992 Dec; 23(10):1467-85. PubMed ID: 1487745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opposing aminergic modulation of distinct spinal locomotor circuits and their functional coupling during amphibian metamorphosis.
    Rauscent A; Einum J; Le Ray D; Simmers J; Combes D
    J Neurosci; 2009 Jan; 29(4):1163-74. PubMed ID: 19176825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From swimming to walking: a single basic network for two different behaviors.
    Bem T; Cabelguen JM; Ekeberg O; Grillner S
    Biol Cybern; 2003 Feb; 88(2):79-90. PubMed ID: 12567223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locomotor pattern in the adult zebrafish spinal cord in vitro.
    Gabriel JP; Mahmood R; Walter AM; Kyriakatos A; Hauptmann G; Calabrese RL; El Manira A
    J Neurophysiol; 2008 Jan; 99(1):37-48. PubMed ID: 17977928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal efference copy signaling and gaze stabilization during locomotion in juvenile Xenopus frogs.
    von Uckermann G; Le Ray D; Combes D; Straka H; Simmers J
    J Neurosci; 2013 Mar; 33(10):4253-64. PubMed ID: 23467343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From tadpole to adult frog locomotion.
    Sillar KT; Simmers J; Combes D
    Curr Opin Neurobiol; 2023 Oct; 82():102753. PubMed ID: 37549591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva.
    McDearmid JR; Drapeau P
    J Neurophysiol; 2006 Jan; 95(1):401-17. PubMed ID: 16207779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory roles of nitric oxide during larval development and metamorphosis in Ciona intestinalis.
    Comes S; Locascio A; Silvestre F; d'Ischia M; Russo GL; Tosti E; Branno M; Palumbo A
    Dev Biol; 2007 Jun; 306(2):772-84. PubMed ID: 17499701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanism and evolutional significance of epithelial-mesenchymal interactions in the body- and tail-dependent metamorphic transformation of anuran larval skin.
    Yoshizato K
    Int Rev Cytol; 2007; 260():213-60. PubMed ID: 17482907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.