These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 17901872)
1. Activity-based protein profiling for the functional annotation of enzymes. Barglow KT; Cravatt BF Nat Methods; 2007 Oct; 4(10):822-7. PubMed ID: 17901872 [TBL] [Abstract][Full Text] [Related]
2. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)--a general method for mapping sites of probe modification in proteomes. Weerapana E; Speers AE; Cravatt BF Nat Protoc; 2007; 2(6):1414-25. PubMed ID: 17545978 [TBL] [Abstract][Full Text] [Related]
3. Small-molecule probes elucidate global enzyme activity in a proteomic context. Lee JS; Yoo YH; Yoon CN BMB Rep; 2014 Mar; 47(3):149-57. PubMed ID: 24499666 [TBL] [Abstract][Full Text] [Related]
4. Chemical strategies for functional proteomics. Adam GC; Sorensen EJ; Cravatt BF Mol Cell Proteomics; 2002 Oct; 1(10):781-90. PubMed ID: 12438561 [TBL] [Abstract][Full Text] [Related]
5. Trifunctional chemical probes for the consolidated detection and identification of enzyme activities from complex proteomes. Adam GC; Sorensen EJ; Cravatt BF Mol Cell Proteomics; 2002 Oct; 1(10):828-35. PubMed ID: 12438565 [TBL] [Abstract][Full Text] [Related]
9. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Cravatt BF; Wright AT; Kozarich JW Annu Rev Biochem; 2008; 77():383-414. PubMed ID: 18366325 [TBL] [Abstract][Full Text] [Related]
10. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Adam GC; Sorensen EJ; Cravatt BF Nat Biotechnol; 2002 Aug; 20(8):805-9. PubMed ID: 12091914 [TBL] [Abstract][Full Text] [Related]
11. A tandem orthogonal proteolysis strategy for high-content chemical proteomics. Speers AE; Cravatt BF J Am Chem Soc; 2005 Jul; 127(28):10018-9. PubMed ID: 16011363 [TBL] [Abstract][Full Text] [Related]
12. Application of activity-based protein profiling to study enzyme function in adipocytes. Galmozzi A; Dominguez E; Cravatt BF; Saez E Methods Enzymol; 2014; 538():151-69. PubMed ID: 24529438 [TBL] [Abstract][Full Text] [Related]
13. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. Simon GM; Cravatt BF J Biol Chem; 2010 Apr; 285(15):11051-5. PubMed ID: 20147750 [TBL] [Abstract][Full Text] [Related]
14. Enzyme inhibitor discovery by activity-based protein profiling. Niphakis MJ; Cravatt BF Annu Rev Biochem; 2014; 83():341-77. PubMed ID: 24905785 [TBL] [Abstract][Full Text] [Related]
16. Activity-based proteomics of lipolytic enzymes. Birner-Gruenberger R; Hermetter A Curr Drug Discov Technol; 2007 Jun; 4(1):1-11. PubMed ID: 17630923 [TBL] [Abstract][Full Text] [Related]
17. Tagging and detection strategies for activity-based proteomics. Sadaghiani AM; Verhelst SH; Bogyo M Curr Opin Chem Biol; 2007 Feb; 11(1):20-8. PubMed ID: 17174138 [TBL] [Abstract][Full Text] [Related]
18. Activity-Based Protein Profiling at the Host-Pathogen Interface. Kovalyova Y; Hatzios SK Curr Top Microbiol Immunol; 2019; 420():73-91. PubMed ID: 30203396 [TBL] [Abstract][Full Text] [Related]