These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17902738)

  • 41. Inversion of articulatory-to-acoustic transformation in the vocal tract by a computer-sorting technique.
    Atal BS; Chang JJ; Mathews MV; Tukey JW
    J Acoust Soc Am; 1978 May; 63(5):1535-53. PubMed ID: 690333
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Speaker compensation for local perturbation of fricative acoustic feedback.
    Casserly ED
    J Acoust Soc Am; 2011 Apr; 129(4):2181-90. PubMed ID: 21476673
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Acoustic and perceptual characteristics of voicing in fricatives and fricative clusters.
    Stevens KN; Blumstein SE; Glicksman L; Burton M; Kurowski K
    J Acoust Soc Am; 1992 May; 91(5):2979-3000. PubMed ID: 1629490
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A parametric model of the vocal tract area function for vowel and consonant simulation.
    Story BH
    J Acoust Soc Am; 2005 May; 117(5):3231-54. PubMed ID: 15957790
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sensorimotor adaptation to feedback perturbations of vowel acoustics and its relation to perception.
    Villacorta VM; Perkell JS; Guenther FH
    J Acoust Soc Am; 2007 Oct; 122(4):2306-19. PubMed ID: 17902866
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of the dynamics of vocal fold contact from the electroglottogram: data from normal male subjects.
    Orlikoff RF
    J Speech Hear Res; 1991 Oct; 34(5):1066-72. PubMed ID: 1749236
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sensitivity of odd-harmonic amplitudes to open quotient and skewing quotient in glottal airflow.
    Titze IR
    J Acoust Soc Am; 2015 Jan; 137(1):502-4. PubMed ID: 25618080
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Frequencies, bandwidths and magnitudes of vocal tract and surrounding tissue resonances, measured through the lips during phonation.
    Hanna N; Smith J; Wolfe J
    J Acoust Soc Am; 2016 May; 139(5):2924. PubMed ID: 27250184
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of whisper and creak vocal mechanisms on vocal tract resonances.
    Swerdlin Y; Smith J; Wolfe J
    J Acoust Soc Am; 2010 Apr; 127(4):2590-8. PubMed ID: 20370040
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vocal tract acoustics.
    Kent RD
    J Voice; 1993 Jun; 7(2):97-117. PubMed ID: 8353635
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On pressure-frequency relations in the excised larynx.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2007 Oct; 122(4):2296-305. PubMed ID: 17902865
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Estimating perceived phonatory pressedness in singing from flow glottograms.
    Sundberg J; Thalén M; Alku P; Vilkman E
    J Voice; 2004 Mar; 18(1):56-62. PubMed ID: 15070224
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A comparative study of human and parrot phonation: acoustic and articulatory correlates of vowels.
    Patterson DK; Pepperberg IM
    J Acoust Soc Am; 1994 Aug; 96(2 Pt 1):634-48. PubMed ID: 7930064
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Audio-vocal responses of vocal fundamental frequency and formant during sustained vowel vocalizations in different noises.
    Lee SH; Hsiao TY; Lee GS
    Hear Res; 2015 Jun; 324():1-6. PubMed ID: 25749240
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in the human vocal tract due to aging and the acoustic correlates of speech production: a pilot study.
    Xue SA; Hao GJ
    J Speech Lang Hear Res; 2003 Jun; 46(3):689-701. PubMed ID: 14696995
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparisons among aerodynamic, electroglottographic, and acoustic spectral measures of female voice.
    Holmberg EB; Hillman RE; Perkell JS; Guiod PC; Goldman SL
    J Speech Hear Res; 1995 Dec; 38(6):1212-23. PubMed ID: 8747815
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation.
    Rasp O; Lohscheller J; Doellinger M; Eysholdt U; Hoppe U
    Folia Phoniatr Logop; 2006; 58(3):175-85. PubMed ID: 16636565
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds.
    Lucero JC; Lourenço K; Hermant N; Van Hirtum A; Pelorson X
    J Acoust Soc Am; 2012 Jul; 132(1):403-11. PubMed ID: 22779487
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formant frequency fluctuation as an index of motor steadiness in the vocal tract.
    Gerratt BR
    J Speech Hear Res; 1983 Jun; 26(2):297-304. PubMed ID: 6887818
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct measurement of pressures involved in vocal exercises using semi-occluded vocal tracts.
    Robieux C; Galant C; Lagier A; Legou T; Giovanni A
    Logoped Phoniatr Vocol; 2015 Oct; 40(3):106-12. PubMed ID: 24850270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.