These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 17902847)

  • 1. Optimal poroelastic layer sequencing for sound transmission loss maximization by topology optimization method.
    Lee JS; Kim EI; Kim YY; Kim JS; Kang YJ
    J Acoust Soc Am; 2007 Oct; 122(4):2097-106. PubMed ID: 17902847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional poroelastic acoustical foam shape design for absorption coefficient maximization by topology optimization method.
    Lee JS; Kim YY; Kim JS; Kang YJ
    J Acoust Soc Am; 2008 Apr; 123(4):2094-106. PubMed ID: 18397017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-perforated panel layout optimization by topology optimization based on unified transfer matrix.
    Kim YJ; Kim YY
    J Acoust Soc Am; 2010 Oct; 128(4):1777-88. PubMed ID: 20968351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an analytical solution of modified Biot's equations for the optimization of lightweight acoustic protection.
    Kanfoud J; Ali Hamdi M; Becot FX; Jaouen L
    J Acoust Soc Am; 2009 Feb; 125(2):863-72. PubMed ID: 19206863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scattering of acoustic waves by macroscopically inhomogeneous poroelastic tubes.
    Groby JP; Dazel O; Depollier C; Ogam E; Kelders L
    J Acoust Soc Am; 2012 Jul; 132(1):477-86. PubMed ID: 22779494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reflection and transmission coefficients of a single layer in poroelastic media.
    Corredor RM; Santos JE; Gauzellino PM; Carcione JM
    J Acoust Soc Am; 2014 Jun; 135(6):3151-62. PubMed ID: 24907781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of material properties profiles in one-dimensional macroscopically inhomogeneous rigid frame porous media in the frequency domain.
    De Ryck L; Lauriks W; Leclaire P; Groby JP; Wirgin A; Depollier C
    J Acoust Soc Am; 2008 Sep; 124(3):1591-606. PubMed ID: 19045651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sound absorption by clamped poroelastic plates.
    Aygun H; Attenborough K
    J Acoust Soc Am; 2008 Sep; 124(3):1550-6. PubMed ID: 19045646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of negative dispersion by a nonlocal poroelastic theory.
    Chakraborty A
    J Acoust Soc Am; 2008 Jan; 123(1):56-67. PubMed ID: 18177138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An alternative Biot's displacement formulation for porous materials.
    Dazel O; Brouard B; Depollier C; Griffiths S
    J Acoust Soc Am; 2007 Jun; 121(6):3509-16. PubMed ID: 17552703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission loss of double panels filled with porogranular materials.
    Chazot JD; Guyader JL
    J Acoust Soc Am; 2009 Dec; 126(6):3040-8. PubMed ID: 20000917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of an air-layer-subdivision technique on the sound transmission through a single plate.
    Toyoda M; Kugo H; Shimizu T; Takahashi D
    J Acoust Soc Am; 2008 Feb; 123(2):825-31. PubMed ID: 18247887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normal incidence sound transmission loss evaluation by upstream surface impedance measurements.
    Panneton R
    J Acoust Soc Am; 2009 Mar; 125(3):1490-7. PubMed ID: 19275307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersion and attenuation due to scattering from heterogeneities of the frame bulk modulus of a poroelastic medium.
    Hefner BT; Jackson DR
    J Acoust Soc Am; 2010 Jun; 127(6):3372-84. PubMed ID: 20550237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic measurements on poroelastic slabs: determination of reflection and transmission coefficients and processing for Biot input parameters.
    Jocker J; Smeulders D
    Ultrasonics; 2009 Mar; 49(3):319-30. PubMed ID: 19081590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Partition of Unity Finite Element Method for the simulation of waves in air and poroelastic media.
    Chazot JD; Perrey-Debain E; Nennig B
    J Acoust Soc Am; 2014 Feb; 135(2):724-33. PubMed ID: 25234881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attenuation of sound in sand sediments due to porosity fluctuations.
    Hefner BT; Jackson DR
    J Acoust Soc Am; 2014 Aug; 136(2):583-95. PubMed ID: 25096093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustical and mechanical characterization of poroelastic materials using a Bayesian approach.
    Chazot JD; Zhang E; Antoni J
    J Acoust Soc Am; 2012 Jun; 131(6):4584-95. PubMed ID: 22712932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-frequency dispersion from viscous drag at the grain-grain contact in water-saturated sand.
    Chotiros NP; Isakson MJ
    J Acoust Soc Am; 2008 Nov; 124(5):EL296-301. PubMed ID: 19045681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer matrix modeling and experimental validation of cellular porous material with resonant inclusions.
    Doutres O; Atalla N; Osman H
    J Acoust Soc Am; 2015 Jun; 137(6):3502-13. PubMed ID: 26093437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.