BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 17902860)

  • 21. The use of the kurtosis metric in the evaluation of occupational hearing loss in workers in China: implications for hearing risk assessment.
    Davis RI; Qiu W; Heyer NJ; Zhao Y; Qiuling Yang MS; Li N; Tao L; Zhu L; Zeng L; Yao D
    Noise Health; 2012; 14(61):330-42. PubMed ID: 23257587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of noise-induced inner ear damage.
    Dieroff HG
    Schriftenr Ver Wasser Boden Lufthyg; 1993; 88():238-49. PubMed ID: 8460367
    [No Abstract]   [Full Text] [Related]  

  • 23. The importance of "temporal pattern" in traumatic impulse noise exposures.
    Danielson R; Henderson D; Gratton MA; Bianchi L; Salvi R
    J Acoust Soc Am; 1991 Jul; 90(1):209-18. PubMed ID: 1880291
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Amplitude and time characteristics of latent auditory evoked potentials in occupational hearing disorders with and without the recruitment phenomenon].
    Shidlovskaia TV; Kotov AI; Kulakova TB; Podol'skaia EV
    Vestn Otorinolaringol; 1991; (5):36-9. PubMed ID: 1755182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hearing loss in the chinchilla from impact and continuous noise exposure.
    Dunn DE; Davis RR; Merry CJ; Franks JR
    J Acoust Soc Am; 1991 Oct; 90(4 Pt 1):1979-85. PubMed ID: 1669963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GFAP aggregates in the cochlear nerve increase the noise vulnerability of sensory cells in the organ of Corti in the murine model of Alexander disease.
    Masuda M; Tanaka KF; Kanzaki S; Wakabayashi K; Oishi N; Suzuki T; Ikenaka K; Ogawa K
    Neurosci Res; 2008 Sep; 62(1):15-24. PubMed ID: 18602179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of noise-induced changes of auditory brainstem and middle latency response amplitudes in rats.
    Popelar J; Grecova J; Rybalko N; Syka J
    Hear Res; 2008 Nov; 245(1-2):82-91. PubMed ID: 18812219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of sound preconditioning on hearing loss from low or middle-frequency noise exposure.
    Liu YG; He YJ; Li DD; Zheng SX; Niu CM
    Space Med Med Eng (Beijing); 2000 Oct; 13(5):313-7. PubMed ID: 11894866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acrylonitrile potentiates hearing loss and cochlear damage induced by moderate noise exposure in rats.
    Pouyatos B; Gearhart CA; Fechter LD
    Toxicol Appl Pharmacol; 2005 Apr; 204(1):46-56. PubMed ID: 15781293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protective effect of isoflurane anesthesia on noise-induced hearing loss in mice.
    Kim JU; Lee HJ; Kang HH; Shin JW; Ku SW; Ahn JH; Kim YJ; Chung JW
    Laryngoscope; 2005 Nov; 115(11):1996-9. PubMed ID: 16319612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dose and time-dependent protection of the antioxidant N-L-acetylcysteine against impulse noise trauma.
    Duan M; Qiu J; Laurell G; Olofsson A; Counter SA; Borg E
    Hear Res; 2004 Jun; 192(1-2):1-9. PubMed ID: 15157958
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complex noise exposures: an energy analysis.
    Ahroon WA; Hamernik RP; Davis RI
    J Acoust Soc Am; 1993 Feb; 93(2):997-1006. PubMed ID: 8445135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of military low-altitude flight noise on the inner ear of the guinea pig. Part I: Hearing threshold measurements.
    Gehrig W; Meyer P; Ising H; Kuhl KD; Schmidt R; Grützmacher W
    Schriftenr Ver Wasser Boden Lufthyg; 1993; 88():368-78. PubMed ID: 8460376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a noise metric for assessment of exposure risk to complex noises.
    Zhu X; Kim JH; Song WJ; Murphy WJ; Song S
    J Acoust Soc Am; 2009 Aug; 126(2):703-12. PubMed ID: 19640036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Experimental studies on damage to acoustic organ in guinea pigs caused by imitated coal mining noise].
    Xing J; Liu W; Sun X
    Zhonghua Yu Fang Yi Xue Za Zhi; 1996 Sep; 30(5):276-8. PubMed ID: 9388885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustical stress and hearing sensitivity in fishes: does the linear threshold shift hypothesis hold water?
    Smith ME; Kane AS; Popper AN
    J Exp Biol; 2004 Sep; 207(Pt 20):3591-602. PubMed ID: 15339955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased resistance to free radical damage induced by low-level sound conditioning.
    Harris KC; Bielefeld E; Hu BH; Henderson D
    Hear Res; 2006 Mar; 213(1-2):118-29. PubMed ID: 16466871
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of prestimulatory carbogen inhalation on noise-induced temporary threshold shifts in humans and chinchilla.
    Witter HL; Deka RC; Lipscomb DM; Shambaugh GE
    Am J Otol; 1980 Apr; 1(4):227-32. PubMed ID: 6779637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Audiometric and histological differences between the effects of continuous and impulsive noise exposures.
    Hamernik RP; Ahroon WA; Hsueh KD; Lei SF; Davis RI
    J Acoust Soc Am; 1993 Apr; 93(4 Pt 1):2088-95. PubMed ID: 8473621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vascular endothelial growth factor (VEGF) expression in noise-induced hearing loss.
    Picciotti PM; Fetoni AR; Paludetti G; Wolf FI; Torsello A; Troiani D; Ferraresi A; Pola R; Sergi B
    Hear Res; 2006 Apr; 214(1-2):76-83. PubMed ID: 16603326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.