These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

576 related articles for article (PubMed ID: 17902863)

  • 1. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of impact stress using an aeroelastic model of voice production.
    Horácek J; Laukkanen AM; Sidlof P
    Logoped Phoniatr Vocol; 2007; 32(4):185-92. PubMed ID: 17990190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical mechanisms of phonation onset: a linear stability analysis of an aeroelastic continuum model of phonation.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2007 Oct; 122(4):2279-95. PubMed ID: 17902864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.
    Lucero JC; Van Hirtum A; Ruty N; Cisonni J; Pelorson X
    J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Non-linear model of glottic vibration. Potential clinical implications].
    Giovanni A; Ouaknine M; Garrel R; Ayache S; Robert D
    Rev Laryngol Otol Rhinol (Bord); 2002; 123(5):273-7. PubMed ID: 12741286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS; Hanson DG; Gerratt BR; Trapp TK; Macagba C; Natividad M
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
    Tao C; Jiang JJ
    J Biomech; 2007; 40(10):2191-8. PubMed ID: 17187805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study on the modeling of the glottic vibration: towards a nonlinear model of type stick and slip].
    Garrel R; Giovanni A; Ouaknine MA
    Rev Laryngol Otol Rhinol (Bord); 2007; 128(5):279-88. PubMed ID: 20387373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric glottal jet deflection: differences of two- and three-dimensional models.
    Mattheus W; Brücker C
    J Acoust Soc Am; 2011 Dec; 130(6):EL373-9. PubMed ID: 22225129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A methodological study of hemilaryngeal phonation.
    Jiang JJ; Titze IR
    Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Modeling vocal-fold vibration via integrating two-mass model with finite-element method].
    Jiang J; Yu Q; Qiu Q; Xu K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):297-302. PubMed ID: 15884539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using the relaxation oscillations principle for simple phonation modeling.
    Garrel R; Scherer R; Nicollas R; Giovanni A; Ouaknine M
    J Voice; 2008 Jul; 22(4):385-98. PubMed ID: 17280814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibratory pattern of vocal folds under tension asymmetry.
    Maunsell R; Ouaknine M; Giovanni A; Crespo A
    Otolaryngol Head Neck Surg; 2006 Sep; 135(3):438-44. PubMed ID: 16949979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
    Decker GZ; Thomson SL
    J Voice; 2007 May; 21(3):273-84. PubMed ID: 16504473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The minimum glottal airflow to initiate vocal fold oscillation.
    Jiang JJ; Tao C
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2873-81. PubMed ID: 17550186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
    Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.