These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 17902864)

  • 21. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics.
    Chan RW; Titze IR
    J Acoust Soc Am; 2006 Apr; 119(4):2351-62. PubMed ID: 16642848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of poroelastic coefficients on normal vibration modes in vocal-fold tissues.
    Tao C; Liu X
    J Acoust Soc Am; 2011 Feb; 129(2):934-43. PubMed ID: 21361450
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa.
    Chan RW; Titze IR; Titze MR
    J Acoust Soc Am; 1997 Jun; 101(6):3722-7. PubMed ID: 9193059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing phonation threshold flow and pressure by abducting excised larynges.
    Hottinger DG; Tao C; Jiang JJ
    Laryngoscope; 2007 Sep; 117(9):1695-9. PubMed ID: 17762794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of flow-structure interaction in the larynx during phonation using an immersed-boundary method.
    Luo H; Mittal R; Bielamowicz SA
    J Acoust Soc Am; 2009 Aug; 126(2):816-24. PubMed ID: 19640046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract.
    Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S
    Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phonation threshold pressure in a physical model of the vocal fold mucosa.
    Titze IR; Schmidt SS; Titze MR
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3080-4. PubMed ID: 7759648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of acoustic loading on an effective single mass model of the vocal folds.
    Zañartu M; Mongeau L; Wodicka GR
    J Acoust Soc Am; 2007 Feb; 121(2):1119-29. PubMed ID: 17348533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measurement of vocal fold collision forces during phonation: methods and preliminary data.
    Gunter HE; Howe RD; Zeitels SM; Kobler JB; Hillman RE
    J Speech Lang Hear Res; 2005 Jun; 48(3):567-76. PubMed ID: 16197273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling.
    Kaburagi T
    J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical simulation and experimental validation of inverse quasi-one-dimensional steady and unsteady glottal flow models.
    Cisonni J; Van Hirtum A; Pelorson X; Willems J
    J Acoust Soc Am; 2008 Jul; 124(1):535-45. PubMed ID: 18646996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational study of effects of tension imbalance on phonation in a three-dimensional tubular larynx model.
    Xue Q; Zheng X; Mittal R; Bielamowicz S
    J Voice; 2014 Jul; 28(4):411-9. PubMed ID: 24725589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental investigation of the influence of a posterior gap on glottal flow and sound.
    Park JB; Mongeau L
    J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
    Tao C; Jiang JJ
    J Biomech; 2007; 40(10):2191-8. PubMed ID: 17187805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics.
    Zhang Z
    J Acoust Soc Am; 2010 Apr; 127(4):2554-62. PubMed ID: 20370037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-speed video analysis of the phonation onset, with an application to the diagnosis of functional dysphonias.
    Braunschweig T; Flaschka J; Schelhorn-Neise P; Döllinger M
    Med Eng Phys; 2008 Jan; 30(1):59-66. PubMed ID: 17317268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of phonatory efficiency by vocal fold tension and glottic width in the excised canine larynx.
    Slavit DH; McCaffrey TV
    Ann Otol Rhinol Laryngol; 1991 Aug; 100(8):668-77. PubMed ID: 1872519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.