These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 17902927)

  • 41. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons.
    Magda GZ; Jin X; Hagymási I; Vancsó P; Osváth Z; Nemes-Incze P; Hwang C; Biró LP; Tapasztó L
    Nature; 2014 Oct; 514(7524):608-11. PubMed ID: 25355361
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spin polarized conductance in hybrid graphene nanoribbons using 5-7 defects.
    Botello-Méndez AR; Cruz-Silva E; López-Urías F; Sumpter BG; Meunier V; Terrones M; Terrones H
    ACS Nano; 2009 Nov; 3(11):3606-12. PubMed ID: 19863086
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Magnetism in bcc and fcc Fe with carbon and manganese.
    Medvedeva NI; Van Aken D; Medvedeva JE
    J Phys Condens Matter; 2010 Aug; 22(31):316002. PubMed ID: 21399372
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Triplet states of zigzag edged hexagonal graphene molecules C(6m∗∗2)H(6m) (m = 1, 2, 3, ..., 10) and carbon based magnetism.
    Philpott MR; Kawazoe Y
    J Chem Phys; 2011 Mar; 134(12):124706. PubMed ID: 21456694
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The properties of BiSb nanoribbons from first-principles calculations.
    Lv HY; Liu HJ; Tan XJ; Pan L; Wen YW; Shi J; Tang XF
    Nanoscale; 2012 Jan; 4(2):511-7. PubMed ID: 22101571
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Toward Zigzag-edged Helical Nanographene Based on [7]Helicene.
    Rong MG; Wang J; Liu J
    Chem Asian J; 2021 May; 16(10):1216-1220. PubMed ID: 33769686
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electronic and magnetic properties of armchair graphene nanoribbons with 558 grain boundary.
    Dai QQ; Zhu YF; Jiang Q
    Phys Chem Chem Phys; 2014 Jun; 16(22):10607-13. PubMed ID: 24752487
    [TBL] [Abstract][Full Text] [Related]  

  • 48. First-principles study of line-defect-embedded zigzag graphene nanoribbons: electronic and magnetic properties.
    Guan Z; Si C; Hu S; Duan W
    Phys Chem Chem Phys; 2016 Apr; 18(17):12350-6. PubMed ID: 27087060
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tunable magnetism in strained graphene with topological line defect.
    Kou L; Tang C; Guo W; Chen C
    ACS Nano; 2011 Feb; 5(2):1012-7. PubMed ID: 21229964
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magnetism in Nonplanar Zigzag Edge Termini of Graphene Nanoribbons.
    Xu X; Sun K; Ishikawa A; Narita A; Kawai S
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202302534. PubMed ID: 36929312
    [TBL] [Abstract][Full Text] [Related]  

  • 51. First-principles study of the triwing graphene nanoribbons: junction-dependent electronic structures and electric field modulations.
    Ding Y; Wang Y
    Phys Chem Chem Phys; 2012 Feb; 14(6):2040-9. PubMed ID: 22234604
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural and electronic properties of graphene nanotube-nanoribbon hybrids.
    Lee CH; Yang CK; Lin MF; Chang CP; Su WS
    Phys Chem Chem Phys; 2011 Mar; 13(9):3925-31. PubMed ID: 21210053
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of nonmagnetic impurities on the spin transport property of a graphene nanoribbon device.
    Park J; Yang H; Park KS; Lee EK
    J Chem Phys; 2009 Jun; 130(21):214103. PubMed ID: 19508052
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effects of the formation of Stone-Wales defects on the electronic and magnetic properties of silicon carbide nanoribbons: a first-principles investigation.
    Guan J; Yu G; Ding X; Chen W; Shi Z; Huang X; Sun C
    Chemphyschem; 2013 Aug; 14(12):2841-52. PubMed ID: 23794368
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Realizing diverse electronic and magnetic properties in hybrid zigzag BNC nanoribbons via hydrogenation.
    Sun Y; Yu G; Liu J; Shen X; Huang X; Chen W
    Phys Chem Chem Phys; 2016 Jan; 18(2):1326-40. PubMed ID: 26658552
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Density functional study of methyl chemisorption on polycyclic aromatic hydrocarbons.
    Unterreiner BV; Carissan Y; Klopper W
    Chemphyschem; 2006 Jun; 7(6):1311-21. PubMed ID: 16671151
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Width-Tuned Magnetic Order Oscillation on Zigzag Edges of Honeycomb Nanoribbons.
    Chen WC; Zhou Y; Yu SL; Yin WG; Gong CD
    Nano Lett; 2017 Jul; 17(7):4400-4404. PubMed ID: 28648082
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Onset of diradical character in small nanosized graphene patches.
    Wang J; Zubarev DY; Philpott MR; Vukovic S; Lester WA; Cui T; Kawazoe Y
    Phys Chem Chem Phys; 2010 Sep; 12(33):9839-44. PubMed ID: 20532344
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Magnetism and perfect spin filtering effect in graphene nanoflakes.
    Sheng W; Ning ZY; Yang ZQ; Guo H
    Nanotechnology; 2010 Sep; 21(38):385201. PubMed ID: 20739743
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M; Panigrahi P; Yunguo L; Ramzan M; Ahuja R
    Nanotechnology; 2014 Apr; 25(16):165703. PubMed ID: 24675167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.