These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 1790295)

  • 1. Electrostatic interactions in protein solution--a comparison between Poisson-Boltzmann and Monte Carlo calculations.
    Fushiki M; Svensson B; Jönsson B; Woodward CE
    Biopolymers; 1991 Sep; 31(10):1149-58. PubMed ID: 1790295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divalent cations and the electrostatic potential around DNA: Monte Carlo and Poisson-Boltzmann calculations.
    Pack GR; Wong L; Lamm G
    Biopolymers; 1999 Jun; 49(7):575-90. PubMed ID: 10226502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo and Poisson-Boltzmann calculations of the fraction of counterions bound to DNA.
    Lamm G; Wong L; Pack GR
    Biopolymers; 1994 Feb; 34(2):227-37. PubMed ID: 8142591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-ion binding process on finite macromolecular concentration. A Poisson-Boltzmann and Monte Carlo study.
    de Carvalho SJ; Fenley MO; da Silva FL
    J Phys Chem B; 2008 Dec; 112(51):16766-76. PubMed ID: 19368030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific ion effects in solutions of globular proteins: comparison between analytical models and simulation.
    Boström M; Tavares FW; Bratko D; Ninham BW
    J Phys Chem B; 2005 Dec; 109(51):24489-94. PubMed ID: 16375452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo-based linear Poisson-Boltzmann approach makes accurate salt-dependent solvation free energy predictions possible.
    Simonov NA; Mascagni M; Fenley MO
    J Chem Phys; 2007 Nov; 127(18):185105. PubMed ID: 18020668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential interaction between DNA and small ions in mixed-size counterion systems: Monte Carlo simulation and density functional study.
    Wang K; Yu YX; Gao GH; Luo GS
    J Chem Phys; 2007 Apr; 126(13):135102. PubMed ID: 17430070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density-functional theory and Monte Carlo simulation study on the electric double layer around DNA in mixed-size counterion systems.
    Wang K; Yu YX; Gao GH; Luo GS
    J Chem Phys; 2005 Dec; 123(23):234904. PubMed ID: 16392946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins.
    Abagyan R; Totrov M
    J Mol Biol; 1994 Jan; 235(3):983-1002. PubMed ID: 8289329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible polyelectrolyte simulations at the Poisson-Boltzmann level: a comparison of the kink-jump and multigrid configurational-bias Monte Carlo methods.
    Tsonchev S; Coalson RD; Liu A; Beck TL
    J Chem Phys; 2004 May; 120(20):9817-21. PubMed ID: 15267998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite volume solution of the modified Poisson-Boltzmann equation for two colloidal particles.
    Lima ER; Tavares FW; Biscaia EC
    Phys Chem Chem Phys; 2007 Jun; 9(24):3174-80. PubMed ID: 17612740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo and modified Tanford-Kirkwood results for macromolecular electrostatics calculations.
    de Carvalho SJ; Ghiotto RC; da Silva FL
    J Phys Chem B; 2006 May; 110(17):8832-9. PubMed ID: 16640442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrolyte distribution around two like-charged rods: their effective attractive interaction and angular dependent charge reversal.
    Jiménez-Angeles F; Odriozola G; Lozada-Cassou M
    J Chem Phys; 2006 Apr; 124(13):134902. PubMed ID: 16613472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The combined simulation approach of atomistic and continuum models for the thermodynamics of lysozyme crystals.
    Chang J; Lenhoff AM; Sandler SI
    J Phys Chem B; 2005 Oct; 109(41):19507-15. PubMed ID: 16853520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement and modelling of sequence-specific pKa values of lysine residues in calbindin D9k.
    Kesvatera T; Jönsson B; Thulin E; Linse S
    J Mol Biol; 1996 Jun; 259(4):828-39. PubMed ID: 8683586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new outer boundary formulation and energy corrections for the nonlinear Poisson-Boltzmann equation.
    Boschitsch AH; Fenley MO
    J Comput Chem; 2007 Apr; 28(5):909-21. PubMed ID: 17238171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bridging like-charged macroions through long divalent rodlike ions.
    May S; Iglic A; Rescic J; Maset S; Bohinc K
    J Phys Chem B; 2008 Feb; 112(6):1685-92. PubMed ID: 18205341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On removal of charge singularity in Poisson-Boltzmann equation.
    Cai Q; Wang J; Zhao HK; Luo R
    J Chem Phys; 2009 Apr; 130(14):145101. PubMed ID: 19368474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling salt-mediated electrostatics of macromolecules: the discrete surface charge optimization algorithm and its application to the nucleosome.
    Beard DA; Schlick T
    Biopolymers; 2001 Jan; 58(1):106-15. PubMed ID: 11072233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Electrostatic Interaction of Rigid, Globular Proteins with Arbitrary Charge Distributions.
    McClurg RB; Zukoski CF
    J Colloid Interface Sci; 1998 Dec; 208(2):529-542. PubMed ID: 9845697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.