These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 17902954)

  • 1. Control of tip-to-sample distance in atomic force microscopy: a dual-actuator tip-motion control scheme.
    Jeong Y; Jayanth GR; Menq CH
    Rev Sci Instrum; 2007 Sep; 78(9):093706. PubMed ID: 17902954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feedback based simultaneous correction of imaging artifacts due to geometrical and mechanical cross-talk and tip-sample stick in atomic force microscopy.
    Shegaonkar AC; Salapaka SM
    Rev Sci Instrum; 2007 Oct; 78(10):103706. PubMed ID: 17979427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated approach to piezoactuator positioning in high-speed atomic force microscope imaging.
    Yan Y; Wu Y; Zou Q; Su C
    Rev Sci Instrum; 2008 Jul; 79(7):073704. PubMed ID: 18681705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tip-sample distance control using photothermal actuation of a small cantilever for high-speed atomic force microscopy.
    Yamashita H; Kodera N; Miyagi A; Uchihashi T; Yamamoto D; Ando T
    Rev Sci Instrum; 2007 Aug; 78(8):083702. PubMed ID: 17764324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving tapping mode atomic force microscopy with piezoelectric cantilevers.
    Rogers B; Manning L; Sulchek T; Adams JD
    Ultramicroscopy; 2004 Aug; 100(3-4):267-76. PubMed ID: 15231319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of eddy current microscopy for high resolution electrical conductivity imaging using atomic force microscopy.
    Nalladega V; Sathish S; Jata KV; Blodgett MP
    Rev Sci Instrum; 2008 Jul; 79(7):073705. PubMed ID: 18681706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of a scanned topographic image distorted by the creep effect of a Z scanner in atomic force microscopy.
    Han C; Chung CC
    Rev Sci Instrum; 2011 May; 82(5):053709. PubMed ID: 21639509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the tip mass and position on the AFM cantilever dynamics: coupling between bending, torsion and flexural modes.
    Mokhtari-Nezhad F; Saidi AR; Ziaei-Rad S
    Ultramicroscopy; 2009 Aug; 109(9):1193-202. PubMed ID: 19559530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A control approach to cross-coupling compensation of piezotube scanners in tapping-mode atomic force microscope imaging.
    Wu Y; Shi J; Su C; Zou Q
    Rev Sci Instrum; 2009 Apr; 80(4):043709. PubMed ID: 19405668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a microlateral force sensor and its evaluation using lateral force microscopy.
    Ando Y; Shiraishi N
    Rev Sci Instrum; 2007 Mar; 78(3):033701. PubMed ID: 17411185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a high-bandwidth tripod scanner for high speed atomic force microscopy.
    Yang C; Yan J; Dukic M; Hosseini N; Zhao J; Fantner GE
    Scanning; 2016 Nov; 38(6):889-900. PubMed ID: 27482855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-speed dynamic atomic force microscopy by using a Q-controlled cantilever eigenmode as an actuator.
    Balantekin M
    Ultramicroscopy; 2015 Feb; 149():45-50. PubMed ID: 25436928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-speed tapping-mode atomic force microscopy using a Q-controlled regular cantilever acting as the actuator: proof-of-principle experiments.
    Balantekin M; Satır S; Torello D; Değertekin FL
    Rev Sci Instrum; 2014 Dec; 85(12):123705. PubMed ID: 25554299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic approaching method for atomic force microscope using a Gaussian laser beam.
    Han C; Lee H; Chung CC
    Rev Sci Instrum; 2009 Jul; 80(7):073705. PubMed ID: 19655954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust atomic force microscopy using multiple sensors.
    Baranwal M; Gorugantu RS; Salapaka SM
    Rev Sci Instrum; 2016 Aug; 87(8):083704. PubMed ID: 27587128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact ultra-fast vertical nanopositioner for improving scanning probe microscope scan speed.
    Kenton BJ; Fleming AJ; Leang KK
    Rev Sci Instrum; 2011 Dec; 82(12):123703. PubMed ID: 22225220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast contact-mode atomic force microscopy on biological specimen by model-based control.
    Schitter G; Stark RW; Stemmer A
    Ultramicroscopy; 2004 Aug; 100(3-4):253-7. PubMed ID: 15231317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points.
    Herfst R; Dekker B; Witvoet G; Crowcombe W; de Lange D; Sadeghian H
    Rev Sci Instrum; 2015 Nov; 86(11):113703. PubMed ID: 26628140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment.
    Legleiter J
    Nanotechnology; 2009 Jun; 20(24):245703. PubMed ID: 19471079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.