These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
544 related articles for article (PubMed ID: 17904201)
1. Comparison of storm intensity and application timing on modeled transport and fate of six contaminants. Chiovarou ED; Siewicki TC Sci Total Environ; 2008 Jan; 389(1):87-100. PubMed ID: 17904201 [TBL] [Abstract][Full Text] [Related]
2. Pesticides in surface water runoff in south-eastern New York State, USA: seasonal and stormflow effects on concentrations. Phillips PJ; Bode RW Pest Manag Sci; 2004 Jun; 60(6):531-43. PubMed ID: 15198325 [TBL] [Abstract][Full Text] [Related]
3. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry. Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004 [TBL] [Abstract][Full Text] [Related]
4. Toxicity of carbaryl, diquat dibromide, and fluoranthene, individually and in mixture, to larval grass shrimp, Palaemonetes pugio. Chung KW; Chandler AR; Key PB J Environ Sci Health B; 2008 May; 43(4):293-9. PubMed ID: 18437616 [TBL] [Abstract][Full Text] [Related]
5. Scenario-based simulation of runoff-related pesticide entries into small streams on a landscape level. Probst M; Berenzen N; Lentzen-Godding A; Schulz R Ecotoxicol Environ Saf; 2005 Oct; 62(2):145-59. PubMed ID: 15953635 [TBL] [Abstract][Full Text] [Related]
6. A geo-referenced modeling environment for ecosystem risk assessment: organophosphate pesticides in an agriculturally dominated watershed. Luo Y; Zhang M J Environ Qual; 2009; 38(2):664-74. PubMed ID: 19244487 [TBL] [Abstract][Full Text] [Related]
7. Fate and effects of the insecticide-miticide chlorfenapyr in outdoor aquatic microcosms. Rand GM Ecotoxicol Environ Saf; 2004 May; 58(1):50-60. PubMed ID: 15087163 [TBL] [Abstract][Full Text] [Related]
8. A pesticide runoff model for simulating runoff losses of pesticides from agricultural lands. Li YR; Huang GH; Li YF; Struger J; Fischer JD Water Sci Technol; 2003; 47(1):33-40. PubMed ID: 12578171 [TBL] [Abstract][Full Text] [Related]
9. A fugacity based continuous and dynamic fate and transport model for river networks and its application to Altamaha River. Kilic SG; Aral MM Sci Total Environ; 2009 Jun; 407(12):3855-66. PubMed ID: 19321188 [TBL] [Abstract][Full Text] [Related]
10. Comparative ecological risks of pesticides used in plantation production of papaya: application of the SYNOPS indicator. Hernández-Hernández CN; Valle-Mora J; Santiesteban-Hernández A; Bello-Mendoza R Sci Total Environ; 2007 Aug; 381(1-3):112-25. PubMed ID: 17482661 [TBL] [Abstract][Full Text] [Related]
11. Integrated modeling environment for statewide assessment of groundwater vulnerability from pesticide use in agriculture. Eason A; Tim US; Wang X Pest Manag Sci; 2004 Aug; 60(8):739-45. PubMed ID: 15307665 [TBL] [Abstract][Full Text] [Related]
12. Ecological risk assessment of pesticide runoff from grass surfaces. Haith DA Environ Sci Technol; 2010 Aug; 44(16):6496-502. PubMed ID: 20666475 [TBL] [Abstract][Full Text] [Related]
13. Tillage system, application rate, and extreme event effects on herbicide losses in surface runoff. Shipitalo MJ; Owens LB J Environ Qual; 2006; 35(6):2186-94. PubMed ID: 17071888 [TBL] [Abstract][Full Text] [Related]
14. Assessing exposure to transformation products of soil-applied organic contaminants in surface water: comparison of model predictions and field data. Kern S; Singer H; Hollender J; Schwarzenbach RP; Fenner K Environ Sci Technol; 2011 Apr; 45(7):2833-41. PubMed ID: 21370857 [TBL] [Abstract][Full Text] [Related]
15. Anthropogenic contaminants as tracers in an urbanizing karst aquifer. Mahler B; Massei N J Contam Hydrol; 2007 Apr; 91(1-2):81-106. PubMed ID: 17161500 [TBL] [Abstract][Full Text] [Related]
16. Characterization of roadway stormwater system residuals for reuse and disposal options. Jang YC; Jain P; Tolaymat T; Dubey B; Singh S; Townsend T Sci Total Environ; 2010 Mar; 408(8):1878-87. PubMed ID: 20163826 [TBL] [Abstract][Full Text] [Related]
17. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model. Larose M; Heathman GC; Norton LD; Engel B J Environ Qual; 2007; 36(2):521-31. PubMed ID: 17332256 [TBL] [Abstract][Full Text] [Related]
18. Pesticide runoff model (PeRM): a case study for the Kintore Creek Watershed, Ontario, Canada. Li YR; Li YF; Struger J; Chen B; Huang GH J Environ Sci Health B; 2003 May; 38(3):257-73. PubMed ID: 12716044 [TBL] [Abstract][Full Text] [Related]
19. Ecological risk assessment on a cadmium contaminated soil landfill--a preliminary evaluation based on toxicity tests on local species and site-specific information. Chen CM; Liu MC Sci Total Environ; 2006 Apr; 359(1-3):120-9. PubMed ID: 15964610 [TBL] [Abstract][Full Text] [Related]
20. Pesticide transport with runoff from turf: observations compared with TurfPQ model simulations. Kramer KE; Rice PJ; Horgan BP; Rittenhouse JL; King KW J Environ Qual; 2009; 38(6):2402-11. PubMed ID: 19875796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]