These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 17904246)

  • 61. Superparamagnetic hybrid micelles, based on iron oxide nanoparticles and well-defined diblock copolymers possessing beta-ketoester functionalities.
    Papaphilippou P; Loizou L; Popa NC; Han A; Vekas L; Odysseos A; Krasia-Christoforou T
    Biomacromolecules; 2009 Sep; 10(9):2662-71. PubMed ID: 19627141
    [TBL] [Abstract][Full Text] [Related]  

  • 62. From self-organizing polymers to nanohybrid and biomaterials.
    Förster S; Plantenberg T
    Angew Chem Int Ed Engl; 2002 Mar; 41(5):689-714. PubMed ID: 12491318
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Interfacing living unicellular algae cells with biocompatible polyelectrolyte-stabilised magnetic nanoparticles.
    Fakhrullin RF; Shlykova LV; Zamaleeva AI; Nurgaliev DK; Osin YN; García-Alonso J; Paunov VN
    Macromol Biosci; 2010 Oct; 10(10):1257-64. PubMed ID: 20641044
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Biomimetic design and performance of polymerizable lipids.
    Cashion MP; Long TE
    Acc Chem Res; 2009 Aug; 42(8):1016-25. PubMed ID: 19453103
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pulmonary drug delivery with aerosolizable nanoparticles in an ex vivo lung model.
    Beck-Broichsitter M; Gauss J; Packhaeuser CB; Lahnstein K; Schmehl T; Seeger W; Kissel T; Gessler T
    Int J Pharm; 2009 Feb; 367(1-2):169-78. PubMed ID: 18848609
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Advances in lipid nanodispersions for parenteral drug delivery and targeting.
    Constantinides PP; Chaubal MV; Shorr R
    Adv Drug Deliv Rev; 2008 Mar; 60(6):757-67. PubMed ID: 18096269
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Furan-functionalized co-polymers for targeted drug delivery: characterization, self-assembly and drug encapsulation.
    Shi M; Shoichet MS
    J Biomater Sci Polym Ed; 2008; 19(9):1143-57. PubMed ID: 18727857
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas.
    Mishima K
    Adv Drug Deliv Rev; 2008 Feb; 60(3):411-32. PubMed ID: 18061302
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Polymer therapeutics: reservoir drugs.
    Setton L
    Nat Mater; 2008 Mar; 7(3):172-4. PubMed ID: 18297122
    [No Abstract]   [Full Text] [Related]  

  • 70. Tailoring established polymers for medical applications.
    Neffe AT; Lendlein A
    Med Device Technol; 2007 Oct; 18(6):14-6, 18-9. PubMed ID: 18078176
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [New formulations in dermatology].
    Fredon L; Mallard C
    Ann Dermatol Venereol; 2007 Mar; 134(3 Pt 2):2S30-6. PubMed ID: 17563712
    [No Abstract]   [Full Text] [Related]  

  • 72. Amphiphilic tri- and tetra-block co-polymers combining versatile functionality with facile assembly into cytocompatible nanoparticles.
    Vasey CE; Pearce AK; Sodano F; Cavanagh R; Abelha T; Cuzzucoli Crucitti V; Anane-Adjei AB; Ashford M; Gellert P; Taresco V; Alexander C
    Biomater Sci; 2019 Aug; 7(9):3832-3845. PubMed ID: 31286122
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Thermally responsive polymer-nanoparticle composites for biomedical applications.
    Strong LE; West JL
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2011; 3(3):307-17. PubMed ID: 21384563
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Advances in the study of lipid-based cubic liquid crystalline nanoparticles as drug delivery system].
    Wu HB; Huo DF; Jiang XG
    Yao Xue Xue Bao; 2008 May; 43(5):450-5. PubMed ID: 18717329
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Controlled delivery of anti-sense oligodeoxynucleotide from multilayered biocompatible phosphorylcholine polymer films.
    Zhang Z; Cao X; Zhao X; Holt CM; Lewis AL; Lu JR
    J Control Release; 2008 Aug; 130(1):69-76. PubMed ID: 18562037
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A review of stimuli-responsive nanocarriers for drug and gene delivery.
    Ganta S; Devalapally H; Shahiwala A; Amiji M
    J Control Release; 2008 Mar; 126(3):187-204. PubMed ID: 18261822
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Interpenetrating polymer networks as a route to tunable multi-responsive biomaterials: development of novel concepts.
    Kris Kostanski L; Huang R; Filipe CD; Ghosh R
    J Biomater Sci Polym Ed; 2009; 20(3):271-97. PubMed ID: 19192356
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cellulose-based dual graft molecular brushes as potential drug nanocarriers: stimulus-responsive micelles, self-assembled phase transition behavior, and tunable crystalline morphologies.
    Yan Q; Yuan J; Zhang F; Sui X; Xie X; Yin Y; Wang S; Wei Y
    Biomacromolecules; 2009 Aug; 10(8):2033-42. PubMed ID: 19624155
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Poly(2-oxazoline)s as materials for biomedical applications.
    de la Rosa VR
    J Mater Sci Mater Med; 2014 May; 25(5):1211-25. PubMed ID: 23975334
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Cationic supramolecules consisting of oligoethylenimine-grafted alpha-cyclodextrins threaded on poly(ethylene oxide) for gene delivery.
    Yang C; Li H; Wang X; Li J
    J Biomed Mater Res A; 2009 Apr; 89(1):13-23. PubMed ID: 18404715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.