These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 17904379)
1. Abundant b-type ions produced in electron capture dissociation of peptides without basic amino acid residues. Liu H; Håkansson K J Am Soc Mass Spectrom; 2007 Nov; 18(11):2007-13. PubMed ID: 17904379 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the presence of b ions in electron capture dissociation mass spectra. Cooper HJ J Am Soc Mass Spectrom; 2005 Dec; 16(12):1932-40. PubMed ID: 16253517 [TBL] [Abstract][Full Text] [Related]
3. Electron capture dissociation of peptides metalated with alkaline-earth metal ions. Fung YM; Liu H; Chan TW J Am Soc Mass Spectrom; 2006 Jun; 17(6):757-71. PubMed ID: 16616861 [TBL] [Abstract][Full Text] [Related]
4. Collisionally activated dissociation and electron capture dissociation provide complementary structural information for branched permethylated oligosaccharides. Zhao C; Xie B; Chan SY; Costello CE; O'Connor PB J Am Soc Mass Spectrom; 2008 Jan; 19(1):138-50. PubMed ID: 18063385 [TBL] [Abstract][Full Text] [Related]
5. On the use of electron capture rate constants to describe electron capture dissociation mass spectrometry of peptides. Tsybin YO; Vvorobyev A; Zhurov KO; Laskay ÜA Eur J Mass Spectrom (Chichester); 2015; 21(3):451-8. PubMed ID: 26307726 [TBL] [Abstract][Full Text] [Related]
6. Repeatability and reproducibility of product ion abundances in electron capture dissociation mass spectrometry of peptides. Ben Hamidane H; Vorobyev A; Tsybin YO Eur J Mass Spectrom (Chichester); 2011; 17(4):321-31. PubMed ID: 22006634 [TBL] [Abstract][Full Text] [Related]
7. Electron capture dissociation mass spectrometry of peptide cations containing a lysine homologue: a mobile proton model for explaining the observation of b-type product ions. Lee S; Chung G; Kim J; Oh HB Rapid Commun Mass Spectrom; 2006; 20(21):3167-75. PubMed ID: 17016809 [TBL] [Abstract][Full Text] [Related]
8. Radical-driven peptide backbone dissociation tandem mass spectrometry. Oh HB; Moon B Mass Spectrom Rev; 2015; 34(2):116-32. PubMed ID: 24863492 [TBL] [Abstract][Full Text] [Related]
9. Electrospray ionization tandem mass spectrometry of protonated and alkali-cationized Boc-N-protected hybrid peptides containing repeats of D-Ala-APyC and APyC-D-Ala: formation of [b(n-1) + OCH3 + Na]+ and [b(n-1) + OH + Na]+ ions. Raju G; Purna Chander C; Srinivas Reddy K; Srinivas R; Sharma GV Rapid Commun Mass Spectrom; 2012 Nov; 26(22):2591-600. PubMed ID: 23059875 [TBL] [Abstract][Full Text] [Related]
10. The effect of phosphorylation on the electron capture dissociation of peptide ions. Creese AJ; Cooper HJ J Am Soc Mass Spectrom; 2008 Sep; 19(9):1263-74. PubMed ID: 18585055 [TBL] [Abstract][Full Text] [Related]
11. The effect of fixed charge modifications on electron capture dissociation. Li X; Cournoyer JJ; Lin C; O'Connor PB J Am Soc Mass Spectrom; 2008 Oct; 19(10):1514-26. PubMed ID: 18657441 [TBL] [Abstract][Full Text] [Related]
12. The radical ion chemistry of S-nitrosylated peptides. Jones AW; Winn PJ; Cooper HJ J Am Soc Mass Spectrom; 2012 Dec; 23(12):2063-74. PubMed ID: 23055078 [TBL] [Abstract][Full Text] [Related]
13. New aspects in fragmentation of peptide nucleic acids: comparison of positive and negative ions by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Ziehe M; Grossmann TN; Seitz O; Linscheid MW Rapid Commun Mass Spectrom; 2009 Apr; 23(8):1132-8. PubMed ID: 19280610 [TBL] [Abstract][Full Text] [Related]
14. Probing the gas-phase folding kinetics of peptide ions by IR activated DR-ECD. Lin C; Cournoyer JJ; O'Connor PB J Am Soc Mass Spectrom; 2008 Jun; 19(6):780-9. PubMed ID: 18400512 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the electron capture dissociation fragmentation behavior of doubly and triply protonated peptides from trypsin, Glu-C, and chymotrypsin digestion. Kalli A; Håkansson K J Proteome Res; 2008 Jul; 7(7):2834-44. PubMed ID: 18549259 [TBL] [Abstract][Full Text] [Related]
16. Dehydration versus deamination of N-terminal glutamine in collision-induced dissociation of protonated peptides. Neta P; Pu QL; Kilpatrick L; Yang X; Stein SE J Am Soc Mass Spectrom; 2007 Jan; 18(1):27-36. PubMed ID: 17005415 [TBL] [Abstract][Full Text] [Related]
17. Mapping the tandem mass spectrometric characteristics of citrulline-containing peptides. Steckel A; Uray K; Turiák L; Gömöry Á; Drahos L; Hudecz F; Schlosser G Rapid Commun Mass Spectrom; 2018 Jun; 32(11):844-850. PubMed ID: 29575159 [TBL] [Abstract][Full Text] [Related]
18. Electron capture dissociation product ion abundances at the X amino acid in RAAAA-X-AAAAK peptides correlate with amino acid polarity and radical stability. Vorobyev A; Ben Hamidane H; Tsybin YO J Am Soc Mass Spectrom; 2009 Dec; 20(12):2273-83. PubMed ID: 19811930 [TBL] [Abstract][Full Text] [Related]
19. Effects of charge state and cationizing agent on the electron capture dissociation of a peptide. Iavarone AT; Paech K; Williams ER Anal Chem; 2004 Apr; 76(8):2231-8. PubMed ID: 15080732 [TBL] [Abstract][Full Text] [Related]
20. Charge location directs electron capture dissociation of peptide dications. Tsybin YO; Haselmann KF; Emmett MR; Hendrickson CL; Marshall AG J Am Soc Mass Spectrom; 2006 Dec; 17(12):1704-11. PubMed ID: 16963276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]