These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 17904389)

  • 21. Who comes first? The role of the prefrontal and parietal cortex in cognitive control.
    Brass M; Ullsperger M; Knoesche TR; von Cramon DY; Phillips NA
    J Cogn Neurosci; 2005 Sep; 17(9):1367-75. PubMed ID: 16197690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proactive and reactive cognitive control rely on flexible use of the ventrolateral prefrontal cortex.
    Ryman SG; El Shaikh AA; Shaff NA; Hanlon FM; Dodd AB; Wertz CJ; Ling JM; Barch DM; Stromberg SF; Lin DS; Abrams S; Mayer AR
    Hum Brain Mapp; 2019 Feb; 40(3):955-966. PubMed ID: 30407681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.
    Melcher T; Gruber O
    Cortex; 2009 Feb; 45(2):189-200. PubMed ID: 19150520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sustained and transient neural modulations in prefrontal cortex related to declarative long-term memory, working memory, and attention.
    Marklund P; Fransson P; Cabeza R; Petersson KM; Ingvar M; Nyberg L
    Cortex; 2007 Jan; 43(1):22-37. PubMed ID: 17334205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dysfunctional modulation of emotional interference in the medial prefrontal cortex in patients with schizophrenia.
    Park IH; Park HJ; Chun JW; Kim EY; Kim JJ
    Neurosci Lett; 2008 Aug; 440(2):119-24. PubMed ID: 18562102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mapping interference resolution across task domains: a shared control process in left inferior frontal gyrus.
    Nelson JK; Reuter-Lorenz PA; Persson J; Sylvester CY; Jonides J
    Brain Res; 2009 Feb; 1256():92-100. PubMed ID: 19111526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Left prefrontal activation during episodic remembering: an event-related fMRI study.
    Nolde SF; Johnson MK; D'Esposito M
    Neuroreport; 1998 Oct; 9(15):3509-14. PubMed ID: 9855308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E; Bonino D; Gentili C; Sani L; Pietrini P; Vecchi T
    Neuroscience; 2006 Apr; 139(1):339-49. PubMed ID: 16324793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Error effects in anterior cingulate cortex reverse when error likelihood is high.
    Jessup RK; Busemeyer JR; Brown JW
    J Neurosci; 2010 Mar; 30(9):3467-72. PubMed ID: 20203206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Left ventrolateral prefrontal cortex and the cognitive control of memory.
    Badre D; Wagner AD
    Neuropsychologia; 2007 Oct; 45(13):2883-901. PubMed ID: 17675110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How verbal and spatial manipulation networks contribute to calculation: an fMRI study.
    Zago L; Petit L; Turbelin MR; Andersson F; Vigneau M; Tzourio-Mazoyer N
    Neuropsychologia; 2008; 46(9):2403-14. PubMed ID: 18406434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increasing contextual demand modulates anterior and lateral prefrontal brain regions associated with proactive interference.
    Wolf RC; Walter H; Vasic N
    Int J Neurosci; 2010 Jan; 120(1):40-50. PubMed ID: 20128671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks.
    Peterson BS; Kane MJ; Alexander GM; Lacadie C; Skudlarski P; Leung HC; May J; Gore JC
    Brain Res Cogn Brain Res; 2002 May; 13(3):427-40. PubMed ID: 11919006
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Imagery and retrieval of auditory and visual information: neural correlates of successful and unsuccessful performance.
    Huijbers W; Pennartz CM; Rubin DC; Daselaar SM
    Neuropsychologia; 2011 Jun; 49(7):1730-40. PubMed ID: 21396384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Frontal lobe mechanisms that resolve proactive interference.
    Badre D; Wagner AD
    Cereb Cortex; 2005 Dec; 15(12):2003-12. PubMed ID: 15788702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of left inferior prefrontal stimulation on episodic memory formation: a two-stage fMRI-rTMS study.
    Köhler S; Paus T; Buckner RL; Milner B
    J Cogn Neurosci; 2004 Mar; 16(2):178-88. PubMed ID: 15068590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Involvement of rostral prefrontal cortex in selection between stimulus-oriented and stimulus-independent thought.
    Gilbert SJ; Frith CD; Burgess PW
    Eur J Neurosci; 2005 Mar; 21(5):1423-31. PubMed ID: 15813952
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The neural bases of the effects of item-nonspecific proactive interference in working memory.
    Postle BR; Brush LN
    Cogn Affect Behav Neurosci; 2004 Sep; 4(3):379-92. PubMed ID: 15535173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Segregated neural representation of distinct emotion dimensions in the prefrontal cortex-an fMRI study.
    Grimm S; Schmidt CF; Bermpohl F; Heinzel A; Dahlem Y; Wyss M; Hell D; Boesiger P; Boeker H; Northoff G
    Neuroimage; 2006 Mar; 30(1):325-40. PubMed ID: 16230029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the tip of the tongue: an event-related fMRI study of semantic retrieval failure and cognitive conflict.
    Maril A; Wagner AD; Schacter DL
    Neuron; 2001 Aug; 31(4):653-60. PubMed ID: 11545723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.