BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17904550)

  • 1. Induction of axon and dendrite formation during early RGC-5 cell differentiation.
    Lieven CJ; Millet LE; Hoegger MJ; Levin LA
    Exp Eye Res; 2007 Nov; 85(5):678-83. PubMed ID: 17904550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of GAP-43, beta-III tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment.
    Avwenagha O; Campbell G; Bird MM
    J Neurocytol; 2003 Nov; 32(9):1077-89. PubMed ID: 15044840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of plasminogen activators attenuates the death of differentiated retinal ganglion cells and stabilizes their neurite network in vitro.
    Harvey R; Chintala SK
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1884-91. PubMed ID: 17389524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of Neuronal Morphology in the 661W Cone Photoreceptor Cell Line with Staurosporine.
    Thompson AF; Crowe ME; Lieven CJ; Levin LA
    PLoS One; 2015; 10(12):e0145270. PubMed ID: 26684837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction and axonal localization of epithelial/epidermal fatty acid-binding protein in retinal ganglion cells are associated with axon development and regeneration.
    Allen GW; Liu J; Kirby MA; De León M
    J Neurosci Res; 2001 Nov; 66(3):396-405. PubMed ID: 11746357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neurites: an immunocytochemical study of cultured rat cerebrum.
    Kosik KS; Finch EA
    J Neurosci; 1987 Oct; 7(10):3142-53. PubMed ID: 2444675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of microtubule-associated proteins (MAPs) in adult and embryonic mouse retinal explants: presence of the embryonic map, MAP5/1B, in regenerating adult retinal axons.
    Bates CA; Trinh N; Meyer RL
    Dev Biol; 1993 Feb; 155(2):533-44. PubMed ID: 8432404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential distribution of two microtubule-associated proteins, MAP2 and MAP5, during chick dorsal root ganglion development in situ and in culture.
    Riederer BM; Barakat-Walter I
    Brain Res Dev Brain Res; 1992 Jul; 68(1):111-23. PubMed ID: 1521317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation.
    Dehmelt L; Smart FM; Ozer RS; Halpain S
    J Neurosci; 2003 Oct; 23(29):9479-90. PubMed ID: 14573527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of differentiation protocols for RGC-5 cells.
    Wood JP; Chidlow G; Tran T; Crowston JG; Casson RJ
    Invest Ophthalmol Vis Sci; 2010 Jul; 51(7):3774-83. PubMed ID: 20181845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of siRNA-Mediated Knockdown of GSK3β on Retinal Ganglion Cell Survival and Neurite/Axon Growth.
    Ahmed Z; Morgan-Warren PJ; Berry M; Scott RAH; Logan A
    Cells; 2019 Aug; 8(9):. PubMed ID: 31443508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers.
    Kim IJ; Zhang Y; Meister M; Sanes JR
    J Neurosci; 2010 Jan; 30(4):1452-62. PubMed ID: 20107072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of staurosporine-induced differentiated RGC-5 cells to homocysteine.
    Ganapathy PS; Dun Y; Ha Y; Duplantier J; Allen JB; Farooq A; Bozard BR; Smith SB
    Curr Eye Res; 2010 Jan; 35(1):80-90. PubMed ID: 20021258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tau-mediated process outgrowth is differentially altered by the expression of MAP2b and MAP2c in Sf9 cells.
    Boucher M; Bélanger D; Beaulieu C; Leclerc N
    Cell Motil Cytoskeleton; 1999; 42(4):257-73. PubMed ID: 10223633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms regulating plasminogen activators in transformed retinal ganglion cells.
    Rock N; Chintala SK
    Exp Eye Res; 2008 Mar; 86(3):492-9. PubMed ID: 18243176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal polarization and axon outgrowth in retinal ganglion cells lacking the POU-domain transcription factor Brn-3b.
    Wang SW; Gan L; Martin SE; Klein WH
    Mol Cell Neurosci; 2000 Aug; 16(2):141-56. PubMed ID: 10924257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 661W is a retinal ganglion precursor-like cell line in which glaucoma-associated optineurin mutants induce cell death selectively.
    Sayyad Z; Sirohi K; Radha V; Swarup G
    Sci Rep; 2017 Dec; 7(1):16855. PubMed ID: 29203899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early in vitro genesis and differentiation of axons and dendrites by hippocampal neurons analyzed quantitatively with neurofilament-H and microtubule-associated protein 2 antibodies.
    Pennypacker K; Fischer I; Levitt P
    Exp Neurol; 1991 Jan; 111(1):25-35. PubMed ID: 1898595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LEDGFp52 controls rat retinal ganglion cell neurite growth in culture and regulates specific neuronal growth-associated genes and protein production.
    Zhao HS; Chen SJ; Wu N; Wang XQ; Yin ZQ; Wang Y
    J Int Med Res; 2008; 36(4):815-29. PubMed ID: 18652779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respective roles of neurofilaments, microtubules, MAP1B, and tau in neurite outgrowth and stabilization.
    Shea TB; Beermann ML
    Mol Biol Cell; 1994 Aug; 5(8):863-75. PubMed ID: 7803854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.