These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 17904734)

  • 1. Boron removal from geothermal waters by electrocoagulation.
    Yilmaz AE; Boncukcuoğlu R; Kocakerim MM; Yilmaz MT; Paluluoğlu C
    J Hazard Mater; 2008 May; 153(1-2):146-51. PubMed ID: 17904734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation.
    Yilmaz AE; Boncukcuoğlu R; Kocakerim MM
    J Hazard Mater; 2007 Jun; 144(1-2):101-7. PubMed ID: 17084968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The investigation of parameters affecting boron removal by electrocoagulation method.
    Yilmaz AE; Boncukcuoğlu R; Kocakerim MM; Keskinler B
    J Hazard Mater; 2005 Oct; 125(1-3):160-5. PubMed ID: 15985328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution.
    Yilmaz AE; Boncukcuoğlu R; Kocakerim MM
    J Hazard Mater; 2007 Oct; 149(2):475-81. PubMed ID: 17524554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of magnesia for boron removal from irrigation water.
    Dionisiou N; Matsi T; Misopolinos ND
    J Environ Qual; 2006; 35(6):2222-8. PubMed ID: 17071892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of iron-rich natural clays in Camlica, Turkey for boron sorption from water and its determination by fluorimetric-azomethine-H method.
    Seyhan S; Seki Y; Yurdakoc M; Merdivan M
    J Hazard Mater; 2007 Jul; 146(1-2):180-5. PubMed ID: 17208369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using aluminum electrodes.
    Yildiz YS
    J Hazard Mater; 2008 May; 153(1-2):194-200. PubMed ID: 17875363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of boron from aqueous solutions by batch adsorption on calcined alunite using experimental design.
    Kavak D
    J Hazard Mater; 2009 Apr; 163(1):308-14. PubMed ID: 18675514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of leachate by electrocoagulation using aluminum and iron electrodes.
    Ilhan F; Kurt U; Apaydin O; Gonullu MT
    J Hazard Mater; 2008 Jun; 154(1-3):381-9. PubMed ID: 18036737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anodic oxidation of 1,4-dioxane on boron-doped diamond electrodes for wastewater treatment.
    Choi JY; Lee YJ; Shin J; Yang JW
    J Hazard Mater; 2010 Jul; 179(1-3):762-8. PubMed ID: 20381243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boron removal from synthetic brines and oilfield produced waters using aluminum electrocoagulation.
    Chen M; Tinner S; Shafer-Peltier K; Randtke S; Dollar O; Peltier E
    Sci Total Environ; 2022 Nov; 848():157733. PubMed ID: 35917961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decolorization of C.I. Acid Yellow 23 solution by electrocoagulation process: investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC).
    Daneshvar N; Khataee AR; Amani Ghadim AR; Rasoulifard MH
    J Hazard Mater; 2007 Sep; 148(3):566-72. PubMed ID: 17428605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of Fe(II) from tap water by electrocoagulation technique.
    Ghosh D; Solanki H; Purkait MK
    J Hazard Mater; 2008 Jun; 155(1-2):135-43. PubMed ID: 18164128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of arsenic from wastewaters using electrocoagulation.
    Deniel R; Bindu VH; Rao AV; Anjaneyulu Y
    J Environ Sci Eng; 2008 Oct; 50(4):283-8. PubMed ID: 19697763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation on the new operational parameter effective in Cr(VI) removal efficiency: a study on electrocoagulation by alternating pulse current.
    Keshmirizadeh E; Yousefi S; Rofouei MK
    J Hazard Mater; 2011 Jun; 190(1-3):119-24. PubMed ID: 21531074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters.
    Daneshvar N; Oladegaragoze A; Djafarzadeh N
    J Hazard Mater; 2006 Feb; 129(1-3):116-22. PubMed ID: 16203084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocoagulation of a real reactive dyebath effluent using aluminum and stainless steel electrodes.
    Arslan-Alaton I; Kabdaşli I; Hanbaba D; Kuybu E
    J Hazard Mater; 2008 Jan; 150(1):166-73. PubMed ID: 17945416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical removal of phenol from oil refinery wastewater.
    Abdelwahab O; Amin NK; El-Ashtoukhy ES
    J Hazard Mater; 2009 Apr; 163(2-3):711-6. PubMed ID: 18755537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation the kinetics of fluoride removal by electrocoagulation (EC) process using aluminum electrodes.
    Hu CY; Lo SL; Kuan WH
    J Hazard Mater; 2007 Jun; 145(1-2):180-5. PubMed ID: 17161907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of alternating and direct current in an electrocoagulation process on the removal of cadmium from water.
    Vasudevan S; Lakshmi J
    Water Sci Technol; 2012; 65(2):353-60. PubMed ID: 22233915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.