BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 17905473)

  • 1. Susceptibility of rice to the blast fungus, Magnaporthe grisea.
    Ribot C; Hirsch J; Balzergue S; Tharreau D; Nottéghem JL; Lebrun MH; Morel JB
    J Plant Physiol; 2008 Jan; 165(1):114-24. PubMed ID: 17905473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular differentiation and host invasion by the rice blast fungus Magnaporthe grisea.
    Caracuel-Rios Z; Talbot NJ
    Curr Opin Microbiol; 2007 Aug; 10(4):339-45. PubMed ID: 17707684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction.
    Kawahara Y; Oono Y; Kanamori H; Matsumoto T; Itoh T; Minami E
    PLoS One; 2012; 7(11):e49423. PubMed ID: 23139845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Live-cell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus Magnaporthe oryzae.
    Jones K; Kim DW; Park JS; Khang CH
    BMC Plant Biol; 2016 Mar; 16():69. PubMed ID: 27000073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biotrophy-associated secreted protein 4 (BAS4) participates in the transition of
    Wang C; Liu Y; Liu L; Wang Y; Yan J; Wang C; Li C; Yang J
    Saudi J Biol Sci; 2019 May; 26(4):795-807. PubMed ID: 31049006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of protein-protein interactions between fungus (Magnaporthe grisea) and rice (Oryza sativa L.).
    Ma S; Song Q; Tao H; Harrison A; Wang S; Liu W; Lin S; Zhang Z; Ai Y; He H
    Brief Bioinform; 2019 Mar; 20(2):448-456. PubMed ID: 29040362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction.
    Jiang CJ; Shimono M; Sugano S; Kojima M; Yazawa K; Yoshida R; Inoue H; Hayashi N; Sakakibara H; Takatsuji H
    Mol Plant Microbe Interact; 2010 Jun; 23(6):791-8. PubMed ID: 20459318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation.
    Zhang L; Sun C
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic evidence for
    Wilson RA; Fernandez J; Rocha RO; Marroquin-Guzman M; Wright JD
    Microbiology (Reading); 2019 Nov; 165(11):1198-1202. PubMed ID: 31517594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunity to Rice Blast Disease by Suppression of Effector-Triggered Necrosis.
    Wang R; Ning Y; Shi X; He F; Zhang C; Fan J; Jiang N; Zhang Y; Zhang T; Hu Y; Bellizzi M; Wang GL
    Curr Biol; 2016 Sep; 26(18):2399-2411. PubMed ID: 27641772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Live-cell imaging of rice cytological changes reveals the importance of host vacuole maintenance for biotrophic invasion by blast fungus, Magnaporthe oryzae.
    Mochizuki S; Minami E; Nishizawa Y
    Microbiologyopen; 2015 Dec; 4(6):952-66. PubMed ID: 26472068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rise of a Cereal Killer: The Biology of Magnaporthe oryzae Biotrophic Growth.
    Fernandez J; Orth K
    Trends Microbiol; 2018 Jul; 26(7):582-597. PubMed ID: 29395728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice.
    Moreno AB; Peñas G; Rufat M; Bravo JM; Estopà M; Messeguer J; San Segundo B
    Mol Plant Microbe Interact; 2005 Sep; 18(9):960-72. PubMed ID: 16167766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae.
    Marcel S; Sawers R; Oakeley E; Angliker H; Paszkowski U
    Plant Cell; 2010 Sep; 22(9):3177-87. PubMed ID: 20858844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea.
    Parker D; Beckmann M; Zubair H; Enot DP; Caracuel-Rios Z; Overy DP; Snowdon S; Talbot NJ; Draper J
    Plant J; 2009 Sep; 59(5):723-37. PubMed ID: 19453445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Progress on avirulence genes of the rice blast fungus Magnaporthe grisea].
    Zhang Z; Jiang H; Wang YL; Sun GC
    Yi Chuan; 2011 Jun; 33(6):591-600. PubMed ID: 21684864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of genes expressed during rice-Magnaporthe grisea interactions.
    Kim S; Ahn IP; Lee YH
    Mol Plant Microbe Interact; 2001 Nov; 14(11):1340-6. PubMed ID: 11763134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear and structural dynamics during the establishment of a specialized effector-secreting cell by Magnaporthe oryzae in living rice cells.
    Shipman EN; Jones K; Jenkinson CB; Kim DW; Zhu J; Khang CH
    BMC Cell Biol; 2017 Jan; 18(1):11. PubMed ID: 28125974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus.
    Kankanala P; Czymmek K; Valent B
    Plant Cell; 2007 Feb; 19(2):706-24. PubMed ID: 17322409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea.
    Talbot NJ
    Annu Rev Microbiol; 2003; 57():177-202. PubMed ID: 14527276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.