These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Early and reversible neuropathology induced by tetracycline-regulated lentiviral overexpression of mutant huntingtin in rat striatum. Régulier E; Trottier Y; Perrin V; Aebischer P; Déglon N Hum Mol Genet; 2003 Nov; 12(21):2827-36. PubMed ID: 12952868 [TBL] [Abstract][Full Text] [Related]
3. Unraveling a role for dopamine in Huntington's disease: the dual role of reactive oxygen species and D2 receptor stimulation. Charvin D; Vanhoutte P; Pagès C; Borrelli E; Caboche J Proc Natl Acad Sci U S A; 2005 Aug; 102(34):12218-23. PubMed ID: 16103364 [TBL] [Abstract][Full Text] [Related]
4. Coupling of D2R Short but not D2R Long receptor isoform to the Rho/ROCK signaling pathway renders striatal neurons vulnerable to mutant huntingtin. Galan-Rodriguez B; Martin E; Brouillet E; Déglon N; Betuing S; Caboche J Eur J Neurosci; 2017 Jan; 45(1):198-206. PubMed ID: 27717053 [TBL] [Abstract][Full Text] [Related]
5. Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length. de Almeida LP; Ross CA; Zala D; Aebischer P; Déglon N J Neurosci; 2002 May; 22(9):3473-83. PubMed ID: 11978824 [TBL] [Abstract][Full Text] [Related]
6. Dysregulation of gene expression in primary neuron models of Huntington's disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry. Runne H; Régulier E; Kuhn A; Zala D; Gokce O; Perrin V; Sick B; Aebischer P; Déglon N; Luthi-Carter R J Neurosci; 2008 Sep; 28(39):9723-31. PubMed ID: 18815258 [TBL] [Abstract][Full Text] [Related]
7. Mitogen- and stress-activated protein kinase 1-induced neuroprotection in Huntington's disease: role on chromatin remodeling at the PGC-1-alpha promoter. Martin E; Betuing S; Pagès C; Cambon K; Auregan G; Deglon N; Roze E; Caboche J Hum Mol Genet; 2011 Jun; 20(12):2422-34. PubMed ID: 21493629 [TBL] [Abstract][Full Text] [Related]
8. Progressive and selective striatal degeneration in primary neuronal cultures using lentiviral vector coding for a mutant huntingtin fragment. Zala D; Benchoua A; Brouillet E; Perrin V; Gaillard MC; Zurn AD; Aebischer P; Déglon N Neurobiol Dis; 2005 Dec; 20(3):785-98. PubMed ID: 16006135 [TBL] [Abstract][Full Text] [Related]
9. Neocortical expression of mutant huntingtin is not required for alterations in striatal gene expression or motor dysfunction in a transgenic mouse. Brown TB; Bogush AI; Ehrlich ME Hum Mol Genet; 2008 Oct; 17(20):3095-104. PubMed ID: 18632688 [TBL] [Abstract][Full Text] [Related]
10. Implication of the JNK pathway in a rat model of Huntington's disease. Perrin V; Dufour N; Raoul C; Hassig R; Brouillet E; Aebischer P; Luthi-Carter R; Déglon N Exp Neurol; 2009 Jan; 215(1):191-200. PubMed ID: 19022249 [TBL] [Abstract][Full Text] [Related]
11. Sensitive biochemical aggregate detection reveals aggregation onset before symptom development in cellular and murine models of Huntington's disease. Weiss A; Klein C; Woodman B; Sathasivam K; Bibel M; Régulier E; Bates GP; Paganetti P J Neurochem; 2008 Feb; 104(3):846-58. PubMed ID: 17986219 [TBL] [Abstract][Full Text] [Related]
13. Loss of the thyroid hormone-binding protein Crym renders striatal neurons more vulnerable to mutant huntingtin in Huntington's disease. Francelle L; Galvan L; Gaillard MC; Guillermier M; Houitte D; Bonvento G; Petit F; Jan C; Dufour N; Hantraye P; Elalouf JM; De Chaldée M; Déglon N; Brouillet E Hum Mol Genet; 2015 Mar; 24(6):1563-73. PubMed ID: 25398949 [TBL] [Abstract][Full Text] [Related]
14. Huntington aggregates may not predict neuronal death in Huntington's disease. Kuemmerle S; Gutekunst CA; Klein AM; Li XJ; Li SH; Beal MF; Hersch SM; Ferrante RJ Ann Neurol; 1999 Dec; 46(6):842-9. PubMed ID: 10589536 [TBL] [Abstract][Full Text] [Related]