These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 17905830)
21. Calorimetric analysis of the Ca(2+)-binding betagamma-crystallin homolog protein S from Myxococcus xanthus: intrinsic stability and mutual stabilization of domains. Wenk M; Jaenicke R J Mol Biol; 1999 Oct; 293(1):117-24. PubMed ID: 10512720 [TBL] [Abstract][Full Text] [Related]
22. Structural and functional characterization of a missense mutant of human γS-crystallin associated with dominant infantile cataracts. Bari KJ; Sharma S; Chary KVR Biochem Biophys Res Commun; 2018 Dec; 506(4):862-867. PubMed ID: 30391002 [TBL] [Abstract][Full Text] [Related]
23. Structural studies on the individual domains of human γS-crystallin and its G57W mutant unfolds mechanistic insights into childhood cataracts. Bari KJ; Sharma S; Chary KVR Biochem Biophys Res Commun; 2019 Sep; 517(3):499-506. PubMed ID: 31371024 [TBL] [Abstract][Full Text] [Related]
24. Unfolding of human lens recombinant betaB2- and gammaC-crystallins. Fu L; Liang JJ J Struct Biol; 2002 Sep; 139(3):191-8. PubMed ID: 12457849 [TBL] [Abstract][Full Text] [Related]
25. The domains in gammaB-crystallin: identical fold-different stabilities. Mayr EM; Jaenicke R; Glockshuber R J Mol Biol; 1997 Jun; 269(2):260-9. PubMed ID: 9191069 [TBL] [Abstract][Full Text] [Related]
26. Association of partially folded lens betaB2-crystallins with the alpha-crystallin molecular chaperone. Evans P; Slingsby C; Wallace BA Biochem J; 2008 Feb; 409(3):691-9. PubMed ID: 17937660 [TBL] [Abstract][Full Text] [Related]
27. Dissecting the contributions of β-hairpin tyrosine pairs to the folding and stability of long-lived human γD-crystallins. Yang Z; Xia Z; Huynh T; King JA; Zhou R Nanoscale; 2014; 6(3):1797-807. PubMed ID: 24352614 [TBL] [Abstract][Full Text] [Related]
28. Human αB-crystallin discriminates between aggregation-prone and function-preserving variants of a client protein. Sprague-Piercy MA; Wong E; Roskamp KW; Fakhoury JN; Freites JA; Tobias DJ; Martin RW Biochim Biophys Acta Gen Subj; 2020 Mar; 1864(3):129502. PubMed ID: 31812542 [TBL] [Abstract][Full Text] [Related]
29. Group II archaeal chaperonin recognition of partially folded human γD-crystallin mutants. Sergeeva OA; Yang J; King JA; Knee KM Protein Sci; 2014 Jun; 23(6):693-702. PubMed ID: 24615724 [TBL] [Abstract][Full Text] [Related]
30. Solution properties of γ-crystallins: compact structure and low frictional ratio are conserved properties of diverse γ-crystallins. Chen Y; Zhao H; Schuck P; Wistow G Protein Sci; 2014 Jan; 23(1):76-87. PubMed ID: 24214907 [TBL] [Abstract][Full Text] [Related]
31. Limited proteolysis of gamma II-crystallin from calf eye lens. Physicochemical studies on the N-terminal domain and the intact two-domain protein. Sharma AK; Minke-Gogl V; Gohl P; Siebendritt R; Jaenicke R; Rudolph R Eur J Biochem; 1990 Dec; 194(2):603-9. PubMed ID: 2269285 [TBL] [Abstract][Full Text] [Related]
32. Rapid refolding studies on the chaperone-like alpha-crystallin. Effect of alpha-crystallin on refolding of beta- and gamma-crystallins. Raman B; Ramakrishna T; Rao CM J Biol Chem; 1995 Aug; 270(34):19888-92. PubMed ID: 7650002 [TBL] [Abstract][Full Text] [Related]
33. Aggregation of γ-crystallins associated with human cataracts via domain swapping at the C-terminal β-strands. Das P; King JA; Zhou R Proc Natl Acad Sci U S A; 2011 Jun; 108(26):10514-9. PubMed ID: 21670251 [TBL] [Abstract][Full Text] [Related]
34. Molecular Mechanism of Aggregation of the Cataract-Related γD-Crystallin W42R Variant from Multiscale Atomistic Simulations. Wong EK; Prytkova V; Freites JA; Butts CT; Tobias DJ Biochemistry; 2019 Sep; 58(35):3691-3699. PubMed ID: 31393108 [TBL] [Abstract][Full Text] [Related]
35. Alpha B- and βA3-crystallins containing d-aspartic acids exist in a monomeric state. Sakaue H; Takata T; Fujii N; Sasaki H; Fujii N Biochim Biophys Acta; 2015 Jan; 1854(1):1-9. PubMed ID: 25450505 [TBL] [Abstract][Full Text] [Related]
36. Dimerization of beta B2-crystallin: the role of the linker peptide and the N- and C-terminal extensions. Trinkl S; Glockshuber R; Jaenicke R Protein Sci; 1994 Sep; 3(9):1392-400. PubMed ID: 7833801 [TBL] [Abstract][Full Text] [Related]
37. Degradation of gamma D- and gamma s-crystallins in human lenses. Srivastava OP; Srivastava K Biochem Biophys Res Commun; 1998 Dec; 253(2):288-94. PubMed ID: 9878530 [TBL] [Abstract][Full Text] [Related]
38. Domain interactions and connecting peptides in lens crystallins. Mayr EM; Jaenicke R; Glockshuber R J Mol Biol; 1994 Jan; 235(1):84-8. PubMed ID: 8289268 [TBL] [Abstract][Full Text] [Related]
39. Creation of a new eye lens crystallin (Gambeta) through structure-guided mutagenic grafting of the surface of betaB2 crystallin onto the hydrophobic core of gammaB crystallin. Kapoor D; Singh B; Subramanian K; Guptasarma P FEBS J; 2009 Jun; 276(12):3341-53. PubMed ID: 19438717 [TBL] [Abstract][Full Text] [Related]
40. High resolution structure of an oligomeric eye lens beta-crystallin. Loops, arches, linkers and interfaces in beta B2 dimer compared to a monomeric gamma-crystallin. Lapatto R; Nalini V; Bax B; Driessen H; Lindley PF; Blundell TL; Slingsby C J Mol Biol; 1991 Dec; 222(4):1067-83. PubMed ID: 1762146 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]