BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 17905858)

  • 1. Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities.
    Zhao F; Song CP; He J; Zhu H
    Plant Physiol; 2007 Nov; 145(3):1061-72. PubMed ID: 17905858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exogenously Applied 24-Epibrassinolide (EBL) Ameliorates Detrimental Effects of Salinity by Reducing K+ Efflux via Depolarization-Activated K+ Channels.
    Azhar N; Su N; Shabala L; Shabala S
    Plant Cell Physiol; 2017 Apr; 58(4):802-810. PubMed ID: 28340062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 42K analysis of sodium-induced potassium efflux in barley: mechanism and relevance to salt tolerance.
    Britto DT; Ebrahimi-Ardebili S; Hamam AM; Coskun D; Kronzucker HJ
    New Phytol; 2010 Apr; 186(2):373-84. PubMed ID: 20122133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K(+) -permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley.
    Bose J; Shabala L; Pottosin I; Zeng F; Velarde-Buendía AM; Massart A; Poschenrieder C; Hariadi Y; Shabala S
    Plant Cell Environ; 2014 Mar; 37(3):589-600. PubMed ID: 23937055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of the K+ inward rectifier in the plasma membrane of xylem parenchyma cells from barley roots: effects of TEA+, Ca2+, Ba2+ and La3+.
    Wegner LH; De Boer AH; Raschke K
    J Membr Biol; 1994 Dec; 142(3):363-79. PubMed ID: 7707363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley.
    Chen Z; Pottosin II; Cuin TA; Fuglsang AT; Tester M; Jha D; Zepeda-Jazo I; Zhou M; Palmgren MG; Newman IA; Shabala S
    Plant Physiol; 2007 Dec; 145(4):1714-25. PubMed ID: 17965172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation currents in protoplasts from the roots of a Na+ hyperaccumulating mutant of Capsicum annuum.
    Murthy M; Tester M
    J Exp Bot; 2006; 57(5):1171-80. PubMed ID: 16510515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exogenous zinc application mitigates negative effects of salinity on barley (
    Khan WA; Penrose B; Yun P; Zhou M; Shabala S
    Funct Plant Biol; 2024 May; 51():. PubMed ID: 38753957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen deficiency and salinity affect cell-specific ion concentrations in adventitious roots of barley (Hordeum vulgare).
    Kotula L; Clode PL; Striker GG; Pedersen O; Läuchli A; Shabala S; Colmer TD
    New Phytol; 2015 Dec; 208(4):1114-25. PubMed ID: 26094736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice cultivars with differing salt tolerance contain similar cation channels in their root cells.
    Kavitha PG; Miller AJ; Mathew MK; Maathuis FJ
    J Exp Bot; 2012 May; 63(8):3289-96. PubMed ID: 22345644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cytosolic Na+ : K+ ratio does not explain salinity-induced growth impairment in barley: a dual-tracer study using 42K+ and 24Na+.
    Kronzucker HJ; Szczerba MW; Moazami-Goudarzi M; Britto DT
    Plant Cell Environ; 2006 Dec; 29(12):2228-37. PubMed ID: 17081255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do exogenous polyamines have an impact on the response of a salt-sensitive rice cultivar to NaCl?
    Ndayiragije A; Lutts S
    J Plant Physiol; 2006 Mar; 163(5):506-16. PubMed ID: 16473655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-reciprocal interactions between K+ and Na+ ions in barley (Hordeum vulgare L.).
    Kronzucker HJ; Szczerba MW; Schulze LM; Britto DT
    J Exp Bot; 2008; 59(10):2793-801. PubMed ID: 18562445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loading of nitrate into the xylem: apoplastic nitrate controls the voltage dependence of X-QUAC, the main anion conductance in xylem-parenchyma cells of barley roots.
    Köhler B; Wegner LH; Osipov V; Raschke K
    Plant J; 2002 Apr; 30(2):133-42. PubMed ID: 12000450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid, futile K+ cycling and pool-size dynamics define low-affinity potassium transport in barley.
    Szczerba MW; Britto DT; Kronzucker HJ
    Plant Physiol; 2006 Aug; 141(4):1494-507. PubMed ID: 16815955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acids regulate salinity-induced potassium efflux in barley root epidermis.
    Cuin TA; Shabala S
    Planta; 2007 Feb; 225(3):753-61. PubMed ID: 16955270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamines interact with hydroxyl radicals in activating Ca(2+) and K(+) transport across the root epidermal plasma membranes.
    Zepeda-Jazo I; Velarde-Buendía AM; Enríquez-Figueroa R; Bose J; Shabala S; Muñiz-Murguía J; Pottosin II
    Plant Physiol; 2011 Dec; 157(4):2167-80. PubMed ID: 21980172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots.
    Demidchik V; Tester M
    Plant Physiol; 2002 Feb; 128(2):379-87. PubMed ID: 11842142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots.
    Cuin TA; Shabala S
    Plant Cell Physiol; 2005 Dec; 46(12):1924-33. PubMed ID: 16223738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in efficient metabolite management and nutrient metabolic regulation between wild and cultivated barley grown at high salinity.
    Yousfi S; Rabhi M; Hessini K; Abdelly C; Gharsalli M
    Plant Biol (Stuttg); 2010 Jul; 12(4):650-8. PubMed ID: 20636908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.