These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 17905997)

  • 1. Atomic force microscopy study of the effect of lipopolysaccharides and extracellular polymers on adhesion of Pseudomonas aeruginosa.
    Atabek A; Camesano TA
    J Bacteriol; 2007 Dec; 189(23):8503-9. PubMed ID: 17905997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of LPS structure on protein interactions with Pseudomonas aeruginosa.
    Atabek A; Liu Y; Pinzón-Arango PA; Camesano TA
    Colloids Surf B Biointerfaces; 2008 Nov; 67(1):115-21. PubMed ID: 18819781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the adhesion and interaction forces between Pseudomonas aeruginosa and natural organic matter.
    Abu-Lail LI; Liu Y; Atabek A; Camesano TA
    Environ Sci Technol; 2007 Dec; 41(23):8031-7. PubMed ID: 18186333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relating the physical properties of Pseudomonas aeruginosa lipopolysaccharides to virulence by atomic force microscopy.
    Ivanov IE; Kintz EN; Porter LA; Goldberg JB; Burnham NA; Camesano TA
    J Bacteriol; 2011 Mar; 193(5):1259-66. PubMed ID: 21148734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of lipopolysaccharides in the adhesion, retention, and transport of Escherichia coli JM109.
    Abu-Lail NI; Camesano TA
    Environ Sci Technol; 2003 May; 37(10):2173-83. PubMed ID: 12785523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of ionic strength on the relationship of biopolymer conformation, DLVO contributions, and steric interactions to bioadhesion of Pseudomonas putida KT2442.
    Abu-Lail NI; Camesano TA
    Biomacromolecules; 2003; 4(4):1000-12. PubMed ID: 12857085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of an extracellular polymeric substance (EPS) precoating on the initial adhesion of Burkholderia cepacia and Pseudomonas aeruginosa.
    Hwang G; Kang S; El-Din MG; Liu Y
    Biofouling; 2012; 28(6):525-38. PubMed ID: 22686692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity in bacterial surface polysaccharides, probed on a single-molecule basis.
    Camesano TA; Abu-Lail NI
    Biomacromolecules; 2002; 3(4):661-7. PubMed ID: 12099808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial factors influencing adhesion of Pseudomonas aeruginosa strains to a poly(ethylene oxide) brush.
    Roosjen A; Busscher HJ; Norde W; van der Mei HC
    Microbiology (Reading); 2006 Sep; 152(Pt 9):2673-2682. PubMed ID: 16946262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic force microscopy study of the role of LPS O-antigen on adhesion of E. coli.
    Strauss J; Burnham NA; Camesano TA
    J Mol Recognit; 2009; 22(5):347-55. PubMed ID: 19402104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale investigation on Pseudomonas aeruginosa biofilm formed on porous silicon using atomic force microscopy.
    Kannan A; Karumanchi SL; Krishna V; Thiruvengadam K; Ramalingam S; Gautam P
    Scanning; 2014; 36(5):551-3. PubMed ID: 25042006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces.
    Makin SA; Beveridge TJ
    Microbiology (Reading); 1996 Feb; 142 ( Pt 2)():299-307. PubMed ID: 8932703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residence time, loading force, pH, and ionic strength affect adhesion forces between colloids and biopolymer-coated surfaces.
    Xu LC; Vadillo-Rodriguez V; Logan BE
    Langmuir; 2005 Aug; 21(16):7491-500. PubMed ID: 16042484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of O-side-chain-lipopolysaccharide chemistry on metal binding.
    Langley S; Beveridge TJ
    Appl Environ Microbiol; 1999 Feb; 65(2):489-98. PubMed ID: 9925573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions.
    Sabra W; Lünsdorf H; Zeng AP
    Microbiology (Reading); 2003 Oct; 149(Pt 10):2789-2795. PubMed ID: 14523112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relations between macroscopic and microscopic adhesion of Streptococcus mitis strains to surfaces.
    Vadillo-Rodríguez V; Busscher HJ; Norde W; de Vries J; van der Mei HC
    Microbiology (Reading); 2004 Apr; 150(Pt 4):1015-1022. PubMed ID: 15073310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial variation in deposition rate coefficients of an adhesion-deficient bacterial strain in quartz sand.
    Tong M; Camesano TA; Johnson WP
    Environ Sci Technol; 2005 May; 39(10):3679-87. PubMed ID: 15952372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absolute quantitation of bacterial biofilm adhesion and viscoelasticity by microbead force spectroscopy.
    Lau PC; Dutcher JR; Beveridge TJ; Lam JS
    Biophys J; 2009 Apr; 96(7):2935-48. PubMed ID: 19348775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of bacterial adhesion using a gradient force analysis method and colloid probe atomic force microscopy.
    Li X; Logan BE
    Langmuir; 2004 Sep; 20(20):8817-22. PubMed ID: 15379512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms.
    Lau PC; Lindhout T; Beveridge TJ; Dutcher JR; Lam JS
    J Bacteriol; 2009 Nov; 191(21):6618-31. PubMed ID: 19717596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.