BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17906157)

  • 1. Promoter-trap identification of wheat seed extract-induced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245.
    Pothier JF; Wisniewski-Dyé F; Weiss-Gayet M; Moënne-Loccoz Y; Prigent-Combaret C
    Microbiology (Reading); 2007 Oct; 153(Pt 10):3608-3622. PubMed ID: 17906157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Duplication of plasmid-borne nitrite reductase gene nirK in the wheat-associated plant growth-promoting rhizobacterium Azospirillum brasilense Sp245.
    Pothier JF; Prigent-Combaret C; Haurat J; Moënne-Loccoz Y; Wisniewski-Dyé F
    Mol Plant Microbe Interact; 2008 Jun; 21(6):831-42. PubMed ID: 18624646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile use of Azospirillum brasilense strains tagged with egfp and mCherry genes for the visualization of biofilms associated with wheat roots.
    Ramirez-Mata A; Pacheco MR; Moreno SJ; Xiqui-Vazquez ML; Baca BE
    Microbiol Res; 2018 Oct; 215():155-163. PubMed ID: 30172303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative in situ analysis of ipdC-gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245.
    Rothballer M; Schmid M; Fekete A; Hartmann A
    Environ Microbiol; 2005 Nov; 7(11):1839-46. PubMed ID: 16232298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion.
    Combes-Meynet E; Pothier JF; Moënne-Loccoz Y; Prigent-Combaret C
    Mol Plant Microbe Interact; 2011 Feb; 24(2):271-84. PubMed ID: 21043573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the efficacy of co-inoculation of wheat seedlings with the associative bacteria Paenibacillus polymyxa 1465 and Azospirillum brasilense Sp245.
    Yegorenkova IV; Tregubova KV; Burygin GL; Matora LY; Ignatov VV
    Can J Microbiol; 2016 Mar; 62(3):279-85. PubMed ID: 26863134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of Azospirillum brasilense FP2 Bacteria in Wheat Roots by Strain-Specific Quantitative PCR.
    Stets MI; Alqueres SM; Souza EM; Pedrosa Fde O; Schmid M; Hartmann A; Cruz LM
    Appl Environ Microbiol; 2015 Oct; 81(19):6700-9. PubMed ID: 26187960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in Azospirillum brasilense motility and the effect of wheat seedling exudates.
    Borisov IV; Schelud'ko AV; Petrova LP; Katsy EI
    Microbiol Res; 2009; 164(5):578-87. PubMed ID: 17707621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-based reclassification of
    Dos Santos Ferreira N; Hayashi Sant' Anna F; Massena Reis V; Ambrosini A; Gazolla Volpiano C; Rothballer M; Schwab S; Baura VA; Balsanelli E; Pedrosa FO; Pereira Passaglia LM; Maltempi de Souza E; Hartmann A; Cassan F; Zilli JE
    Int J Syst Evol Microbiol; 2020 Dec; 70(12):6203-6212. PubMed ID: 33064068
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere.
    Baudoin E; Lerner A; Mirza MS; El Zemrany H; Prigent-Combaret C; Jurkevich E; Spaepen S; Vanderleyden J; Nazaret S; Okon Y; Moënne-Loccoz Y
    Res Microbiol; 2010 Apr; 161(3):219-26. PubMed ID: 20138146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays).
    Herschkovitz Y; Lerner A; Davidov Y; Rothballer M; Hartmann A; Okon Y; Jurkevitch E
    Microb Ecol; 2005 Aug; 50(2):277-88. PubMed ID: 16211327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Determination of the structure of the repeated unit of the Azospirillum brasilense SR75 O-specific polysaccharide and homology of the lps loci in the plasmids of Azospirillum brasilense strains SR75 and Sp245].
    Fedonenko IuP; Borisov IV; Konnova ON; Zdorovenko EL; Katsy EI; Konnova SA; Ignatov VV
    Mikrobiologiia; 2005; 74(5):626-32. PubMed ID: 16315981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of a periplasmic nitrate reductase in Azospirillum brasilense Sp245.
    Steenhoudt O; Keijers V; Okon Y; Vanderleyden J
    Arch Microbiol; 2001 May; 175(5):344-52. PubMed ID: 11409544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes.
    Camilios-Neto D; Bonato P; Wassem R; Tadra-Sfeir MZ; Brusamarello-Santos LC; Valdameri G; Donatti L; Faoro H; Weiss VA; Chubatsu LS; Pedrosa FO; Souza EM
    BMC Genomics; 2014 May; 15(1):378. PubMed ID: 24886190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Plasmid P85 from Azospirillum brasilense SP245: study of the circle of possible hosts and incompatibility with plasmids from Azospirillum brasilense SP7].
    Katsy EI
    Mol Gen Mikrobiol Virusol; 1992; (9-10):8-10. PubMed ID: 1298886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flagellin of polar flagellum from Azospirillum brasilense Sp245: Isolation, structure, and biological activity.
    Shirokov A; Budanova A; Burygin G; Evseeva N; Matora L; Shchyogolev S
    Int J Biol Macromol; 2020 Mar; 147():1221-1227. PubMed ID: 31739060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology, and growth in minimal medium on the Azospirillum brasilense Sp7 90-MDa plasmid.
    Croes C; Van Bastelaere E; DeClercq E; Eyers M; Vanderleyden J; Michiels K
    Plasmid; 1991 Sep; 26(2):83-93. PubMed ID: 1749822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Localization of denitrification genes in plasmid DNA of bacteria Azospirillum brasilense].
    Petrova LP; Varshalomidze OÉ; Shelud'ko AV; Katsy EI
    Genetika; 2010 Jul; 46(7):904-10. PubMed ID: 20795494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early plant growth and biochemical responses induced by Azospirillum brasilense Sp245 lipopolysaccharides in wheat (Triticum aestivum L.) seedlings are attenuated by procyanidin B2.
    Vallejo-Ochoa J; López-Marmolejo M; Hernández-Esquivel AA; Méndez-Gómez M; Suárez-Soria LN; Castro-Mercado E; García-Pineda E
    Protoplasma; 2018 Mar; 255(2):685-694. PubMed ID: 29110138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative and antioxidative responses in the wheat-Azospirillum brasilense interaction.
    Méndez-Gómez M; Castro-Mercado E; Alexandre G; García-Pineda E
    Protoplasma; 2016 Mar; 253(2):477-86. PubMed ID: 25952083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.