These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17906721)

  • 1. Computational experiments on optical coating production using monochromatic monitoring strategy aimed at eliminating a cumulative effect of thickness errors.
    Tikhonravov AV; Trubetskov MK; Amotchkina TV
    Appl Opt; 2007 Oct; 46(28):6936-44. PubMed ID: 17906721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elimination of cumulative effect of thickness errors in monochromatic monitoring of optical coating production: theory.
    Tikhonravov AV; Trubetskov MK
    Appl Opt; 2007 Apr; 46(11):2084-90. PubMed ID: 17384724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-production estimates for the choice of strategy and algorithm for monochromatic monitoring of the production of optical coatings.
    Tikhonravov A; Lagutina A; Lagutin I; Yagola A
    Appl Opt; 2023 Jun; 62(18):4906-4912. PubMed ID: 37707267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advantages and challenges of optical coating production with indirect monochromatic monitoring.
    Zhang J; Cao C; Tikhonravov AV; Trubetskov MK; Gorokh A; Cheng X; Wang Z
    Appl Opt; 2015 Apr; 54(11):3433-9. PubMed ID: 25967335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical approach to choosing a strategy of monochromatic monitoring of optical coating production.
    Tikhonravov AV; Trubetskov MK; Amotchkina TV
    Appl Opt; 2006 Oct; 45(30):7863-70. PubMed ID: 17068521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment.
    Friedrich K; Wilbrandt S; Stenzel O; Kaiser N; Hoffmann KH
    Appl Opt; 2010 Jun; 49(16):3150-62. PubMed ID: 20517386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring.
    Tikhonravov AV; Trubetskov MK; Amotchkina TV
    Appl Opt; 2006 Sep; 45(27):7026-34. PubMed ID: 16946781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated construction of monochromatic monitoring strategies.
    Trubetskov M; Amotchkina T; Tikhonravov A
    Appl Opt; 2015 Mar; 54(8):1900-9. PubMed ID: 25968364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical thin film production with continuous reoptimization of layer thicknesses.
    Holm C
    Appl Opt; 1979 Jun; 18(12):1978-82. PubMed ID: 20212589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced algorithms for monochromatic monitoring of complex optical coatings.
    Tikhonravov A; Lagutin I; Lagutina A; Romanov B; Yagola A
    Appl Opt; 2023 Oct; 62(30):7904-7909. PubMed ID: 38038082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optical monitoring method for depositing dielectric layers of arbitrary thickness using reciprocal of transmittance.
    Cai QY; Zheng YX; Luo HH; Zhao DD; Ma XF; Liu DQ
    Opt Express; 2015 Feb; 23(4):4703-14. PubMed ID: 25836507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced error identification in deposition of complex optical layer systems by a multianalyzing approach.
    Schmitz C; Ehlers H; Ristau D
    Appl Opt; 2012 Dec; 51(34):8203-10. PubMed ID: 23207392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Error self-compensation mechanism in the optical coating production with direct broad band monitoring.
    Tikhonravov AV; Kochikov IV; Yagola AG
    Opt Express; 2017 Oct; 25(22):27225-27233. PubMed ID: 29092200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified sequential algorithm for the on-line characterization of optical coatings.
    Tikhonravov AV; Gorokh A
    Opt Express; 2015 Sep; 23(18):23561-9. PubMed ID: 26368453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, production and reverse engineering of ultra-steep hot mirrors.
    Zhang J; Tikhonravov AV; Liu Y; Trubetskov MK; Gorokh A; Wang Z
    Opt Express; 2014 Jun; 22(11):13448-53. PubMed ID: 24921538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deposition error compensation for optical multilayer coatings. I. Theoretical description.
    Sullivan BT; Dobrowolski JA
    Appl Opt; 1992 Jul; 31(19):3821-35. PubMed ID: 20725359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interest of broadband optical monitoring for thin-film filter manufacturing.
    Badoil B; Lemarchand F; Cathelinaud M; Lequime M
    Appl Opt; 2007 Jul; 46(20):4294-303. PubMed ID: 17579685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Refractive Correction Error on Retinal Nerve Fiber Layer Thickness: A Spectralis Optical Coherence Tomography Study.
    Ma X; Chen Y; Liu X; Ning H
    Med Sci Monit; 2016 Dec; 22():5181-5189. PubMed ID: 28030536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the error self-compensation effect associated with direct broad band monitoring of coating production.
    Tikhonravov AV; Kochikov IV; Yagola AG
    Opt Express; 2018 Sep; 26(19):24964-24972. PubMed ID: 30469604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical modelling for retrieval of the coating thickness variations from wavefront errors measurements.
    Baron M; Sassolas B; Pinard L; Ealet A
    Opt Express; 2023 Sep; 31(20):32968-32986. PubMed ID: 37859087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.