BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 17907054)

  • 41. A molecular phylogenetic survey of caprimulgiform nightbirds illustrates the utility of non-coding sequences.
    Braun MJ; Huddleston CJ
    Mol Phylogenet Evol; 2009 Dec; 53(3):948-60. PubMed ID: 19720151
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phylogeny of the Neotropical genus Acestrorhynchus (Ostariophysi: Characiformes) based on nuclear and mitochondrial gene sequences and morphology: a total evidence approach.
    Pretti VQ; Calcagnotto D; Toledo-Piza M; de Almeida-Toledo LF
    Mol Phylogenet Evol; 2009 Aug; 52(2):312-20. PubMed ID: 19168140
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evolution and phylogenetic utility of alignment gaps within intron sequences of three nuclear genes in bumble bees (Bombus).
    Kawakita A; Sota T; Ascher JS; Ito M; Tanaka H; Kato M
    Mol Biol Evol; 2003 Jan; 20(1):87-92. PubMed ID: 12519910
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tracing the most parsimonious indel history.
    Snir S; Pachter L
    J Comput Biol; 2011 Aug; 18(8):967-86. PubMed ID: 21728862
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular dating and phylogenetic relationships among Teiidae (Squamata) inferred by molecular and morphological data.
    Giugliano LG; Collevatti RG; Colli GR
    Mol Phylogenet Evol; 2007 Oct; 45(1):168-79. PubMed ID: 17618129
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular evolution of insertions and deletion in the chloroplast genome of silene.
    Ingvarsson PK; Ribstein S; Taylor DR
    Mol Biol Evol; 2003 Nov; 20(11):1737-40. PubMed ID: 12832644
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal protein-coding gene: further evidence from a nuclear gene of the systematic chaos in the family.
    He S; Mayden RL; Wang X; Wang W; Tang KL; Chen WJ; Chen Y
    Mol Phylogenet Evol; 2008 Mar; 46(3):818-29. PubMed ID: 18203625
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phylogenetic relationships among Agamid lizards of the Laudakia caucasia species group: testing hypotheses of biogeographic fragmentation and an area cladogram for the Iranian Plateau.
    Macey JR; Schulte JA; Ananjeva NB; Larson A; Rastegar-Pouyani N; Shammakov SM; Papenfuss TJ
    Mol Phylogenet Evol; 1998 Aug; 10(1):118-31. PubMed ID: 9751922
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In situ genetic differentiation in a Hispaniolan lizard (Ameiva chrysolaema): a multilocus perspective.
    Gifford ME; Larson A
    Mol Phylogenet Evol; 2008 Oct; 49(1):277-91. PubMed ID: 18611442
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The utility of indels in population genetics: the Tpi intron for host race genealogy of Acrocercops transecta (Insecta: Lepidoptera).
    Ohshima I; Yoshizawa K
    Mol Phylogenet Evol; 2011 May; 59(2):469-76. PubMed ID: 21397705
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Systematic and phylogeographical assessment of the Acanthodactylus erythrurus group (Reptilia: Lacertidae) based on phylogenetic analyses of mitochondrial and nuclear DNA.
    Fonseca MM; Brito JC; Paulo OS; Carretero MA; Harris DJ
    Mol Phylogenet Evol; 2009 May; 51(2):131-42. PubMed ID: 19070671
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees.
    Liu K; Raghavan S; Nelesen S; Linder CR; Warnow T
    Science; 2009 Jun; 324(5934):1561-4. PubMed ID: 19541996
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ancestral sequence alignment under optimal conditions.
    Hudek AK; Brown DG
    BMC Bioinformatics; 2005 Nov; 6():273. PubMed ID: 16293191
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phylogenetics of the lizard genus Tropidurus (Squamata: Tropiduridae: Tropidurinae): direct optimization, descriptive efficiency, and sensitivity analysis of congruence between molecular data and morphology.
    Frost DR; Rodrigues MT; Grant T; Titus TA
    Mol Phylogenet Evol; 2001 Dec; 21(3):352-71. PubMed ID: 11741379
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Origin of the unisexual lizard Gymnophthalmus underwoodi (Gymnophthalmidae) inferred from mitochondrial DNA nucleotide sequences.
    Kizirian DA; Cole CJ
    Mol Phylogenet Evol; 1999 Apr; 11(3):394-400. PubMed ID: 10196080
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Incorporating gaps as phylogenetic characters across eight DNA regions: ramifications for North American Psoraleeae (Leguminosae).
    Egan AN; Crandall KA
    Mol Phylogenet Evol; 2008 Feb; 46(2):532-46. PubMed ID: 18039582
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A universal algorithm for de novo decrypting of heterozygous indel sequences: a tool for personalized medicine.
    Lam CW
    Clin Chim Acta; 2008 Mar; 389(1-2):7-13. PubMed ID: 18078814
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Large-scale parsimony analysis of metazoan indels in protein-coding genes.
    Belinky F; Cohen O; Huchon D
    Mol Biol Evol; 2010 Feb; 27(2):441-51. PubMed ID: 19864469
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Empirical analysis of protein insertions and deletions determining parameters for the correct placement of gaps in protein sequence alignments.
    Chang MS; Benner SA
    J Mol Biol; 2004 Aug; 341(2):617-31. PubMed ID: 15276848
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The phylogeny of the family Lacertidae (Reptilia) based on nuclear DNA sequences: convergent adaptations to arid habitats within the subfamily Eremiainae.
    Mayer W; Pavlicev M
    Mol Phylogenet Evol; 2007 Sep; 44(3):1155-63. PubMed ID: 17616472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.