These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1059 related articles for article (PubMed ID: 17907785)
1. NADPH-dependent covalent binding of [3H]paroxetine to human liver microsomes and S-9 fractions: identification of an electrophilic quinone metabolite of paroxetine. Zhao SX; Dalvie DK; Kelly JM; Soglia JR; Frederick KS; Smith EB; Obach RS; Kalgutkar AS Chem Res Toxicol; 2007 Nov; 20(11):1649-57. PubMed ID: 17907785 [TBL] [Abstract][Full Text] [Related]
2. Bioactivation of phencyclidine in rat and human liver microsomes and recombinant P450 2B enzymes: evidence for the formation of a novel quinone methide intermediate. Driscoll JP; Kornecki K; Wolkowski JP; Chupak L; Kalgutkar AS; O'Donnell JP Chem Res Toxicol; 2007 Oct; 20(10):1488-97. PubMed ID: 17892269 [TBL] [Abstract][Full Text] [Related]
3. Bioactivation of estrone and its catechol metabolites to quinoid-glutathione conjugates in rat liver microsomes. Iverson SL; Shen L; Anlar N; Bolton JL Chem Res Toxicol; 1996 Mar; 9(2):492-9. PubMed ID: 8839054 [TBL] [Abstract][Full Text] [Related]
4. Metabolic activation of the phenothiazine antipsychotics chlorpromazine and thioridazine to electrophilic iminoquinone species in human liver microsomes and recombinant P450s. Wen B; Zhou M Chem Biol Interact; 2009 Oct; 181(2):220-6. PubMed ID: 19482014 [TBL] [Abstract][Full Text] [Related]
5. Evidence for the bioactivation of zomepirac and tolmetin by an oxidative pathway: identification of glutathione adducts in vitro in human liver microsomes and in vivo in rats. Chen Q; Doss GA; Tung EC; Liu W; Tang YS; Braun MP; Didolkar V; Strauss JR; Wang RW; Stearns RA; Evans DC; Baillie TA; Tang W Drug Metab Dispos; 2006 Jan; 34(1):145-51. PubMed ID: 16251255 [TBL] [Abstract][Full Text] [Related]
6. Assessment of the metabolism and intrinsic reactivity of a novel catechol metabolite. Hutzler JM; Melton RJ; Rumsey JM; Thompson DC; Rock DA; Wienkers LC Chem Res Toxicol; 2008 May; 21(5):1125-33. PubMed ID: 18407675 [TBL] [Abstract][Full Text] [Related]
7. 17 beta-estradiol metabolism by hamster hepatic microsomes: comparison of catechol estrogen O-methylation with catechol estrogen oxidation and glutathione conjugation. Butterworth M; Lau SS; Monks TJ Chem Res Toxicol; 1996 Jun; 9(4):793-9. PubMed ID: 8831825 [TBL] [Abstract][Full Text] [Related]
8. Bioactivation of 4-methylphenol (p-cresol) via cytochrome P450-mediated aromatic oxidation in human liver microsomes. Yan Z; Zhong HM; Maher N; Torres R; Leo GC; Caldwell GW; Huebert N Drug Metab Dispos; 2005 Dec; 33(12):1867-76. PubMed ID: 16174805 [TBL] [Abstract][Full Text] [Related]
9. Bioactivation of the tricyclic antidepressant amitriptyline and its metabolite nortriptyline to arene oxide intermediates in human liver microsomes and recombinant P450s. Wen B; Ma L; Zhu M Chem Biol Interact; 2008 May; 173(1):59-67. PubMed ID: 18359012 [TBL] [Abstract][Full Text] [Related]
10. In vitro biotransformation of 3,4-dihydro-6-hydroxy-2,2-dimethyl-7-methoxy-1(2H)-benzopyran (CR-6), a potent lipid peroxidation inhibitor and nitric oxide scavenger, in rat liver microsomes. Yenes S; Commandeur JN; Vermeulen NP; Messeguer A Chem Res Toxicol; 2004 Jul; 17(7):904-13. PubMed ID: 15257615 [TBL] [Abstract][Full Text] [Related]
11. Bioactivation of 2,3-diaminopyridine-containing bradykinin B1 receptor antagonists: irreversible binding to liver microsomal proteins and formation of glutathione conjugates. Tang C; Subramanian R; Kuo Y; Krymgold S; Lu P; Kuduk SD; Ng C; Feng DM; Elmore C; Soli E; Ho J; Bock MG; Baillie TA; Prueksaritanont T Chem Res Toxicol; 2005 Jun; 18(6):934-45. PubMed ID: 15962928 [TBL] [Abstract][Full Text] [Related]
12. Metabolism and bioactivation of 3-methylindole by human liver microsomes. Yan Z; Easterwood LM; Maher N; Torres R; Huebert N; Yost GS Chem Res Toxicol; 2007 Jan; 20(1):140-8. PubMed ID: 17226936 [TBL] [Abstract][Full Text] [Related]
13. Bioactivation of phenytoin by human cytochrome P450: characterization of the mechanism and targets of covalent adduct formation. Munns AJ; De Voss JJ; Hooper WD; Dickinson RG; Gillam EM Chem Res Toxicol; 1997 Sep; 10(9):1049-58. PubMed ID: 9305589 [TBL] [Abstract][Full Text] [Related]
14. Differences in cytochrome P450-mediated biotransformation of 1,2-dichlorobenzene by rat and man: implications for human risk assessment. Hissink AM; Oudshoorn MJ; Van Ommen B; Haenen GR; Van Bladeren PJ Chem Res Toxicol; 1996 Dec; 9(8):1249-56. PubMed ID: 8951226 [TBL] [Abstract][Full Text] [Related]
15. Bioactivation of glafenine by human liver microsomes and peroxidases: identification of electrophilic iminoquinone species and GSH conjugates. Wen B; Moore DJ Drug Metab Dispos; 2011 Sep; 39(9):1511-21. PubMed ID: 21628497 [TBL] [Abstract][Full Text] [Related]
16. In vitro studies on the metabolic activation of the furanopyridine L-754,394, a highly potent and selective mechanism-based inhibitor of cytochrome P450 3A4. Sahali-Sahly Y; Balani SK; Lin JH; Baillie TA Chem Res Toxicol; 1996 Sep; 9(6):1007-12. PubMed ID: 8870989 [TBL] [Abstract][Full Text] [Related]
17. 17 beta-Estradiol metabolism by hamster hepatic microsomes. Implications for the catechol-O-methyl transferase-mediated detoxication of catechol estrogens. Butterworth M; Lau SS; Monks TJ Drug Metab Dispos; 1996 May; 24(5):588-94. PubMed ID: 8723741 [TBL] [Abstract][Full Text] [Related]
18. In vitro metabolic activation of thiabendazole via 5-hydroxythiabendazole: identification of a glutathione conjugate of 5-hydroxythiabendazole. Dalvie D; Smith E; Deese A; Bowlin S Drug Metab Dispos; 2006 Apr; 34(4):709-17. PubMed ID: 16434547 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic studies on the metabolic scission of thiazolidinedione derivatives to acyclic thiols. Reddy VB; Karanam BV; Gruber WL; Wallace MA; Vincent SH; Franklin RB; Baillie TA Chem Res Toxicol; 2005 May; 18(5):880-8. PubMed ID: 15892582 [TBL] [Abstract][Full Text] [Related]
20. Covalent binding of catechol estrogens to glutathione catalyzed by horseradish peroxidase, lactoperoxidase, or rat liver microsomes. Cao K; Devanesan PD; Ramanathan R; Gross ML; Rogan EG; Cavalieri EL Chem Res Toxicol; 1998 Aug; 11(8):917-24. PubMed ID: 9705754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]