These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17909594)

  • 1. Spectral imaging system for scaling the power spectrum of optical waveforms.
    Torres-Company V; Lancis J; Andrés P
    Opt Lett; 2007 Oct; 32(19):2849-51. PubMed ID: 17909594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study on Nonlinear Spectral Properties of Photonic Crystal Fiber in Theory and Experiment].
    Zhao XT; Wang ST; Liu XX; Han Y; Zhao YY; Li SG; Hou LT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1650-5. PubMed ID: 30052365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion.
    Bourkoff E; Zhao W; Joseph RI; Christodoulides DN
    Opt Lett; 1987 Apr; 12(4):272-4. PubMed ID: 19738862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation of temporal coherence gratings in dispersive medium with a chirper.
    Ding C; Korotkova O; Zhao D; Li D; Zhao Z; Pan L
    Opt Express; 2020 Mar; 28(5):7463-7474. PubMed ID: 32225973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercontinuum spectrum control in microstructure fibers by initial chirp management.
    Driben R; Zhavoronkov N
    Opt Express; 2010 Aug; 18(16):16733-8. PubMed ID: 20721063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulse compression and multimegawatt optical solitons in hollow photonic-crystal fibers.
    Bessonov AD; Zheltikov AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066618. PubMed ID: 16907008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach.
    Liu W; Li C; Zhang Z; Kärtner FX; Chang G
    Opt Express; 2016 Jul; 24(14):15328-40. PubMed ID: 27410809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic fractional Fourier transformer with a single dispersive device.
    Cuadrado-Laborde C; Carrascosa A; Díez A; Cruz JL; Andres MV
    Opt Express; 2013 Apr; 21(7):8558-63. PubMed ID: 23571945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral-temporal dynamics of high power Raman picosecond pulse using H
    Benoît A; Ilinova E; Beaudou B; Debord B; Gérôme F; Benabid F
    Opt Lett; 2017 Oct; 42(19):3896-3899. PubMed ID: 28957155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale and structure-tunable laser spectral compression in an optical dispersion-increasing fiber.
    Lin YS; Huang CB
    Opt Express; 2017 Jul; 25(15):18024-18030. PubMed ID: 28789290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear optical pulse compression based on temporal zone plates.
    Li B; Li M; Lou S; Azaña J
    Opt Express; 2013 Jul; 21(14):16814-30. PubMed ID: 23938532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Nyquist pulse generation using a time lens with spectral slicing.
    Wang D; Huo L; Xing Y; Jiang X; Lou C
    Opt Express; 2015 Feb; 23(4):4329-39. PubMed ID: 25836469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soliton-like pulse propagation in a normal dispersive liquid-core optical fiber.
    Karasawa N; Yoshida A; Watanabe K
    Opt Lett; 2018 Aug; 43(16):3897-3900. PubMed ID: 30106911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of high-frequency spectral phase modulation on the temporal profile of short optical pulses.
    Dorrer C; Bromage J
    Opt Express; 2008 Mar; 16(5):3058-68. PubMed ID: 18542392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear pulse propagation in optical fibers using second order moments.
    Burgoyne B; Godbout N; Lacroix S
    Opt Express; 2007 Aug; 15(16):10075-90. PubMed ID: 19547357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses.
    Gebhardt M; Gaida C; Stutzki F; Hädrich S; Jauregui C; Limpert J; Tünnermann A
    Opt Express; 2015 Jun; 23(11):13776-87. PubMed ID: 26072749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral narrowing of chirp-free light pulses in anomalously dispersive, highly nonlinear photonic-crystal fibers.
    Sidorov-Biryukov DA; Fernandez A; Zhu L; Pugzlys A; Serebryannikov EE; Baltuska A; Zheltikov AM
    Opt Express; 2008 Feb; 16(4):2502-7. PubMed ID: 18542329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral Fraunhofer regime: time-to-frequency conversion by the action of a single time lens on an optical pulse.
    Azaña J; Berger NK; Levit B; Fischer B
    Appl Opt; 2004 Jan; 43(2):483-90. PubMed ID: 14735967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrete solitons in optical fiber systems with large pre-dispersion.
    Kumar S; Nakazawa M
    Opt Express; 2017 Aug; 25(17):19923-19945. PubMed ID: 29041679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of the ultrashort pulse spectral phase based on dispersive Fourier transformation.
    Sukiasyan M; Karapetyan N; Toneyan H; Kutuzyan A; Mouradian L
    Appl Opt; 2019 Apr; 58(11):2817-2822. PubMed ID: 31044882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.