These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 17909747)
1. Identification and functional characterisation of cellobiose and lactose transport systems in Lactococcus lactis IL1403. Kowalczyk M; Cocaign-Bousquet M; Loubiere P; Bardowski J Arch Microbiol; 2008 Mar; 189(3):187-96. PubMed ID: 17909747 [TBL] [Abstract][Full Text] [Related]
2. Genetic characterization of the CcpA-dependent, cellobiose-specific PTS system comprising CelB, PtcB and PtcA that transports lactose in Lactococcus lactis IL1403. Aleksandrzak-Piekarczyk T; Polak J; Jezierska B; Renault P; Bardowski J Int J Food Microbiol; 2011 Jan; 145(1):186-94. PubMed ID: 21262549 [TBL] [Abstract][Full Text] [Related]
4. In vitro DNA binding of purified CcpA protein from Lactococcus lactis IL1403. Kowalczyk M; Borcz B; Płochocka D; Bardowski J Acta Biochim Pol; 2007; 54(1):71-8. PubMed ID: 17356715 [TBL] [Abstract][Full Text] [Related]
5. Alternative lactose catabolic pathway in Lactococcus lactis IL1403. Aleksandrzak-Piekarczyk T; Kok J; Renault P; Bardowski J Appl Environ Microbiol; 2005 Oct; 71(10):6060-9. PubMed ID: 16204522 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the individual glucose uptake systems of Lactococcus lactis: mannose-PTS, cellobiose-PTS and the novel GlcU permease. Castro R; Neves AR; Fonseca LL; Pool WA; Kok J; Kuipers OP; Santos H Mol Microbiol; 2009 Feb; 71(3):795-806. PubMed ID: 19054326 [TBL] [Abstract][Full Text] [Related]
7. Multiple control of the acetate pathway in Lactococcus lactis under aeration by catabolite repression and metabolites. Lopez de Felipe F; Gaudu P Appl Microbiol Biotechnol; 2009 Apr; 82(6):1115-22. PubMed ID: 19214497 [TBL] [Abstract][Full Text] [Related]
8. Structure of the transcription regulator CcpA from Lactococcus lactis. Loll B; Kowalczyk M; Alings C; Chieduch A; Bardowski J; Saenger W; Biesiadka J Acta Crystallogr D Biol Crystallogr; 2007 Apr; 63(Pt 4):431-6. PubMed ID: 17372346 [TBL] [Abstract][Full Text] [Related]
9. Fructose utilization in Lactococcus lactis as a model for low-GC gram-positive bacteria: its regulator, signal, and DNA-binding site. Barrière C; Veiga-da-Cunha M; Pons N; Guédon E; van Hijum SA; Kok J; Kuipers OP; Ehrlich DS; Renault P J Bacteriol; 2005 Jun; 187(11):3752-61. PubMed ID: 15901699 [TBL] [Abstract][Full Text] [Related]
10. Disruption of a Transcriptional Repressor by an Insertion Sequence Element Integration Leads to Activation of a Novel Silent Cellobiose Transporter in Lactococcus lactis MG1363. Solopova A; Kok J; Kuipers OP Appl Environ Microbiol; 2017 Dec; 83(23):. PubMed ID: 28970222 [No Abstract] [Full Text] [Related]
11. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. Lulko AT; Buist G; Kok J; Kuipers OP J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215 [TBL] [Abstract][Full Text] [Related]
12. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus. Solem C; Koebmann B; Jensen PR Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381 [TBL] [Abstract][Full Text] [Related]
13. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization. Jankovic I; Brückner R J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218 [TBL] [Abstract][Full Text] [Related]
14. Mutations that alter the regulation of the chb operon of Escherichia coli allow utilization of cellobiose. Kachroo AH; Kancherla AK; Singh NS; Varshney U; Mahadevan S Mol Microbiol; 2007 Dec; 66(6):1382-95. PubMed ID: 18028317 [TBL] [Abstract][Full Text] [Related]
15. Intracellular effectors regulating the activity of the Lactococcus lactis CodY pleiotropic transcription regulator. Petranovic D; Guédon E; Sperandio B; Delorme C; Ehrlich D; Renault P Mol Microbiol; 2004 Jul; 53(2):613-21. PubMed ID: 15228538 [TBL] [Abstract][Full Text] [Related]
16. Metabolic adaptation of Lactococcus lactis in the digestive tract: the example of response to lactose. Roy K; Anba J; Corthier G; Rigottier-Gois L; Monnet V; Mistou MY J Mol Microbiol Biotechnol; 2008; 14(1-3):137-44. PubMed ID: 17957121 [TBL] [Abstract][Full Text] [Related]
17. Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae. Iyer R; Baliga NS; Camilli A J Bacteriol; 2005 Dec; 187(24):8340-9. PubMed ID: 16321938 [TBL] [Abstract][Full Text] [Related]
18. Two acid-inducible promoters from Lactococcus lactis require the cis-acting ACiD-box and the transcription regulator RcfB. Madsen SM; Hindré T; Le Pennec JP; Israelsen H; Dufour A Mol Microbiol; 2005 May; 56(3):735-46. PubMed ID: 15819628 [TBL] [Abstract][Full Text] [Related]
19. Only one of the two annotated Lactococcus lactis fabG genes encodes a functional beta-ketoacyl-acyl carrier protein reductase. Wang H; Cronan JE Biochemistry; 2004 Sep; 43(37):11782-9. PubMed ID: 15362862 [TBL] [Abstract][Full Text] [Related]
20. The Lcn972 bacteriocin-encoding plasmid pBL1 impairs cellobiose metabolism in Lactococcus lactis. Campelo AB; Gaspar P; Roces C; Rodríguez A; Kok J; Kuipers OP; Neves AR; Martínez B Appl Environ Microbiol; 2011 Nov; 77(21):7576-85. PubMed ID: 21890668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]