These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 17909919)
1. Optimal control of gypsy moth populations. Whittle A; Lenhart S; White KA Bull Math Biol; 2008 Feb; 70(2):398-411. PubMed ID: 17909919 [TBL] [Abstract][Full Text] [Related]
2. Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide. Thomé RC; Yang HM; Esteva L Math Biosci; 2010 Jan; 223(1):12-23. PubMed ID: 19735668 [TBL] [Abstract][Full Text] [Related]
3. Pheromone trap and population model-based control of the codling moth, Cydia pomonella L., in Romanian apple culture. Iordanescu O; Micu R; Angelache I; Blidaru A; Snejana D; Simeria G; Draganescu E; Beyers T; Verberne A; Aerts R Commun Agric Appl Biol Sci; 2007; 72(3):603-9. PubMed ID: 18399493 [TBL] [Abstract][Full Text] [Related]
4. Possibilities to control the horse chestnut leaf miner (Cameraria ohridella) in urban environments. Grabenweger G; Koch T; Balder H; Hopp H; Jäckel B; Schmolling S Commun Agric Appl Biol Sci; 2005; 70(4):633-40. PubMed ID: 16628897 [TBL] [Abstract][Full Text] [Related]
5. Increased mortality of gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae) exposed to gypsy moth nuclear polyhedrosis virus in combination with the phenolic gycoside salicin. Cook SP; Webb RE; Podgwaite JD; Reardon RC J Econ Entomol; 2003 Dec; 96(6):1662-7. PubMed ID: 14977101 [TBL] [Abstract][Full Text] [Related]
6. Optimal control of soybean aphid in the presence of natural enemies and the implied value of their ecosystem services. Zhang W; Swinton SM J Environ Manage; 2012 Apr; 96(1):7-16. PubMed ID: 22208393 [TBL] [Abstract][Full Text] [Related]
7. Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: II. AFLP analysis reflects human-aided local adaptation of a global pest species. Thaler R; Brandstätter A; Meraner A; Chabicovski M; Parson W; Zelger R; Dalla Via J; Dallinger R Mol Phylogenet Evol; 2008 Sep; 48(3):838-49. PubMed ID: 18619861 [TBL] [Abstract][Full Text] [Related]
8. Resistance of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), larvae in Michigan to insecticides with different modes of action and the impact on field residual activity. Mota-Sanchez D; Wise JC; Poppen RV; Gut LJ; Hollingworth RM Pest Manag Sci; 2008 Sep; 64(9):881-90. PubMed ID: 18383486 [TBL] [Abstract][Full Text] [Related]
9. Multi-objective evolutionary optimization of biological pest control with impulsive dynamics in soybean crops. Cardoso RT; da Cruz AR; Wanner EF; Takahashi RH Bull Math Biol; 2009 Aug; 71(6):1463-81. PubMed ID: 19267163 [TBL] [Abstract][Full Text] [Related]
10. Optimum timing for integrated pest management: modelling rates of pesticide application and natural enemy releases. Tang S; Tang G; Cheke RA J Theor Biol; 2010 May; 264(2):623-38. PubMed ID: 20219475 [TBL] [Abstract][Full Text] [Related]
11. Effect of tannic acid on the development and resistance of the gypsy moth Lymantria dispar L. to viral infection. Martemyanov VV; Bakhvalov SA; Dubovskiy IM; Glupov VV; Salakhutdinov NF; Tolstikov GA Dokl Biochem Biophys; 2006; 409():219-22. PubMed ID: 16986435 [No Abstract] [Full Text] [Related]
12. Host-pathogen interactions, insect outbreaks, and natural selection for disease resistance. Elderd BD; Dushoff J; Dwyer G Am Nat; 2008 Dec; 172(6):829-42. PubMed ID: 18976065 [TBL] [Abstract][Full Text] [Related]
13. Virulence and fitness of the fungal pathogen Entomophaga maimaiga in its host Lymantria dispar, for pathogen and host strains originating from Asia, Europe, and North America. Nielsen C; Keena M; Hajek AE J Invertebr Pathol; 2005 Jul; 89(3):232-42. PubMed ID: 16023665 [TBL] [Abstract][Full Text] [Related]
14. Genetic architecture in codling moth populations: comparison between microsatellite and insecticide resistance markers. Franck P; Reyes M; Olivares J; Sauphanor B Mol Ecol; 2007 Sep; 16(17):3554-64. PubMed ID: 17845430 [TBL] [Abstract][Full Text] [Related]
15. Modelling the interactions between phenology and insecticide resistance genes in the codling moth Cydia pomonella. Boivin T; Chadoeuf J; Bouvier JC; Beslay D; Sauphanor B Pest Manag Sci; 2005 Jan; 61(1):53-67. PubMed ID: 15593074 [TBL] [Abstract][Full Text] [Related]
16. Dispersion in time and space affect mating success and Allee effects in invading gypsy moth populations. Robinet C; Lance DR; Thorpe KW; Onufrieva KS; Tobin PC; Liebhold AM J Anim Ecol; 2008 Sep; 77(5):966-73. PubMed ID: 18557957 [TBL] [Abstract][Full Text] [Related]
17. Spatial analysis of harmonic oscillation of gypsy moth outbreak intensity. Haynes KJ; Liebhold AM; Johnson DM Oecologia; 2009 Mar; 159(2):249-56. PubMed ID: 18985391 [TBL] [Abstract][Full Text] [Related]
18. Insecticides suppress natural enemies and increase pest damage in cabbage. Bommarco R; Miranda F; Bylund H; Björkman C J Econ Entomol; 2011 Jun; 104(3):782-91. PubMed ID: 21735894 [TBL] [Abstract][Full Text] [Related]
19. Human visitation rates to the Apostle Islands National Lakeshore and the introduction of the non-native species Lymantria dispar (L.). Tobin PC; Van Stappen J; Blackburn LM J Environ Manage; 2010 Oct; 91(10):1991-6. PubMed ID: 20570035 [TBL] [Abstract][Full Text] [Related]
20. Bioeconomics of managing the spread of exotic pest species with barrier zones. Sharov AA Risk Anal; 2004 Aug; 24(4):879-92. PubMed ID: 15357807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]