These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17909969)

  • 1. The cumulative and sublethal effects of turbulence on erythrocytes in a stirred-tank model.
    Aziz A; Werner BC; Epting KL; Agosti CD; Curtis WR
    Ann Biomed Eng; 2007 Dec; 35(12):2108-20. PubMed ID: 17909969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of eddy length scale on mechanical loading of blood cells in turbulent flow.
    Dooley PN; Quinlan NJ
    Ann Biomed Eng; 2009 Dec; 37(12):2449-58. PubMed ID: 19757062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemolysis Related to Turbulent Eddy Size Distributions Using Comparisons of Experiments to Computations.
    Ozturk M; O'Rear EA; Papavassiliou DV
    Artif Organs; 2015 Dec; 39(12):E227-39. PubMed ID: 26412190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rethinking turbulence in blood.
    Antiga L; Steinman DA
    Biorheology; 2009; 46(2):77-81. PubMed ID: 19458411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel formulation for blood trauma prediction by a modified power-law mathematical model.
    Grigioni M; Morbiducci U; D'Avenio G; Benedetto GD; Del Gaudio C
    Biomech Model Mechanobiol; 2005 Dec; 4(4):249-60. PubMed ID: 16283225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow.
    Quinlan NJ; Dooley PN
    Ann Biomed Eng; 2007 Aug; 35(8):1347-56. PubMed ID: 17458700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of hemolysis in turbulent shear orifice flow.
    Tamagawa M; Akamatsu T; Saitoh K
    Artif Organs; 1996 Jun; 20(6):553-9. PubMed ID: 8817954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extending the Power-Law Hemolysis Model to Complex Flows.
    Faghih MM; Keith Sharp M
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27657486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Approach for Assessing Turbulent Flow Damage to Blood in Medical Devices.
    Ozturk M; Papavassiliou DV; O'Rear EA
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27760246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of turbulent shear stresses on the numerical blood damage prediction in a ventricular assist device.
    Torner B; Konnigk L; Wurm FH
    Int J Artif Organs; 2019 Dec; 42(12):735-747. PubMed ID: 31328604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Eulerian and Lagrangian models for hemolysis estimation.
    Taskin ME; Fraser KH; Zhang T; Wu C; Griffith BP; Wu ZJ
    ASAIO J; 2012; 58(4):363-72. PubMed ID: 22635012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of turbulent viscous shear stress on red blood cell hemolysis.
    Yen JH; Chen SF; Chern MK; Lu PC
    J Artif Organs; 2014 Jun; 17(2):178-85. PubMed ID: 24619800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymptotically consistent numerical approximation of hemolysis.
    Farinas MI; Garon A; Lacasse D; N'dri D
    J Biomech Eng; 2006 Oct; 128(5):688-96. PubMed ID: 16995755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump.
    Avci M; Heck M; O'Rear EA; Papavassiliou DV
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1709-1722. PubMed ID: 34106362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of viscous dissipative stresses induced by a mechanical heart valve using PIV data.
    Li CP; Lo CW; Lu PC
    Ann Biomed Eng; 2010 Mar; 38(3):903-16. PubMed ID: 20020213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis.
    Kameneva MV; Burgreen GW; Kono K; Repko B; Antaki JF; Umezu M
    ASAIO J; 2004; 50(5):418-23. PubMed ID: 15497379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significance of extensional stresses to red blood cell lysis in a shearing flow.
    Down LA; Papavassiliou DV; O'Rear EA
    Ann Biomed Eng; 2011 Jun; 39(6):1632-42. PubMed ID: 21298343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in surface roughness of erythrocytes due to shear stress: atomic force microscopic visualization of the surface microstructure.
    Ohta Y; Otsuka C; Okamoto H
    J Artif Organs; 2003; 6(2):101-5. PubMed ID: 14598110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tensor-based measure for estimating blood damage.
    Arora D; Behr M; Pasquali M
    Artif Organs; 2004 Nov; 28(11):1002-15. PubMed ID: 15504116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prosthetic heart valves' mechanical loading of red blood cells in patients with hereditary membrane defects.
    Grigioni M; Caprari P; Tarzia A; D'Avenio G
    J Biomech; 2005 Aug; 38(8):1557-65. PubMed ID: 15958211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.