BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 17910257)

  • 1. Pyrolysis of waste electrical and electronic equipment: effect of antinomy trioxide on the pyrolysis of styrenic polymers.
    Hall WJ; Bhaskar T; Merpati NM; Muto A; Sakata Y; Williams PT
    Environ Technol; 2007 Sep; 28(9):1045-54. PubMed ID: 17910257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of decabromodiphenyl ether and antimony trioxide on controlled pyrolysis of high-impact polystyrene mixed with polyolefins.
    Mitan NM; Bhaskar T; Hall WJ; Muto A; Williams PT; Sakata Y
    Chemosphere; 2008 Jul; 72(7):1073-9. PubMed ID: 18499216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkaline reforming of brominated fire-retardant plastics: fate of bromine and antimony.
    Onwudili JA; Williams PT
    Chemosphere; 2009 Feb; 74(6):787-96. PubMed ID: 19054543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WEEE recycling: Pyrolysis of fire retardant model polymers.
    Luda MP; Euringer N; Moratti U; Zanetti M
    Waste Manag; 2005; 25(2):203-8. PubMed ID: 15737719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TG-MS investigation of brominated products from the degradation of brominated flame retardants in high-impact polystyrene.
    Grause G; Karakita D; Ishibashi J; Kameda T; Bhaskar T; Yoshioka T
    Chemosphere; 2011 Oct; 85(3):368-73. PubMed ID: 21764419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkaline hydrothermal treatment of brominated high impact polystyrene (HIPS-Br) for bromine and bromine-free plastic recovery.
    Brebu M; Bhaskar T; Muto A; Sakata Y
    Chemosphere; 2006 Aug; 64(6):1021-5. PubMed ID: 16580706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Versatile and fast gas chromatographic determination of frequently used brominated flame retardants in styrenic polymers.
    Pöhlein M; Bertran RU; Wolf M; van Eldik R
    J Chromatogr A; 2008 Sep; 1203(2):217-28. PubMed ID: 18687441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The individual and cumulative effect of brominated flame retardant and polyvinylchloride (PVC) on thermal degradation of acrylonitrile-butadiene-styrene (ABS) copolymer.
    Brebu M; Bhaskar T; Murai K; Muto A; Sakata Y; Uddin MA
    Chemosphere; 2004 Aug; 56(5):433-40. PubMed ID: 15212908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis of flame retardant brominated polyester composites.
    Cunliffe AM; Williams PT
    Environ Technol; 2004 Dec; 25(12):1349-56. PubMed ID: 15691195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brominated and organophosphate flame retardants in selected consumer products on the Japanese market in 2008.
    Kajiwara N; Noma Y; Takigami H
    J Hazard Mater; 2011 Sep; 192(3):1250-9. PubMed ID: 21783321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-assisted extraction for qualitative and quantitative determination of brominated flame retardants in styrenic plastic fractions from waste electrical and electronic equipment (WEEE).
    Vilaplana F; Ribes-Greus A; Karlsson S
    Talanta; 2009 Apr; 78(1):33-9. PubMed ID: 19174199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brominated-chlorinated diphenyl ethers formed by thermolysis of polybrominated diphenyl ethers at low temperatures.
    Rupp S; Metzger JW
    Chemosphere; 2005 Sep; 60(11):1644-51. PubMed ID: 16083771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of polybrominated diphenyl ethers and PBDD/Fs during the recycling of high impact polystyrene containing decabromodiphenyl ether and antimony oxide.
    Hamm S; Strikkeling M; Ranken PF; Rothenbacher KP
    Chemosphere; 2001 Sep; 44(6):1353-60. PubMed ID: 11513112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personal air sampling and analysis of polybrominated diphenyl ethers and other bromine containing compounds at an electronic recycling facility in Sweden.
    Pettersson-Julander A; van Bavel B; Engwall M; Westberg H
    J Environ Monit; 2004 Nov; 6(11):874-80. PubMed ID: 15536500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide.
    Sekhar VC; Nampoothiri KM; Mohan AJ; Nair NR; Bhaskar T; Pandey A
    J Hazard Mater; 2016 Nov; 318():347-354. PubMed ID: 27434738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of waste electrical and electronic equipment (WEEE) relevant substances in polymeric food-contact articles sold on the European market.
    Puype F; Samsonek J; Knoop J; Egelkraut-Holtus M; Ortlieb M
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(3):410-26. PubMed ID: 25599136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of brominated flame retardant from electrical and electronic waste plastic by solvothermal technique.
    Zhang CC; Zhang FS
    J Hazard Mater; 2012 Jun; 221-222():193-8. PubMed ID: 22575175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis of tetrabromobisphenol-A containing paper laminated printed circuit boards.
    Grause G; Furusawa M; Okuwaki A; Yoshioka T
    Chemosphere; 2008 Mar; 71(5):872-8. PubMed ID: 18155746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts.
    Miandad R; Barakat MA; Rehan M; Aburiazaiza AS; Ismail IMI; Nizami AS
    Waste Manag; 2017 Nov; 69():66-78. PubMed ID: 28882427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrolysis of scrap tyres with zeolite USY.
    Shen B; Wu C; Wang R; Guo B; Liang C
    J Hazard Mater; 2006 Sep; 137(2):1065-73. PubMed ID: 16704900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.