These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 17910385)
1. Optimization of biomathematical model predictions for cognitive performance impairment in individuals: accounting for unknown traits and uncertain states in homeostatic and circadian processes. Van Dongen HP; Mott CG; Huang JK; Mollicone DJ; McKenzie FD; Dinges DF Sleep; 2007 Sep; 30(9):1129-43. PubMed ID: 17910385 [TBL] [Abstract][Full Text] [Related]
2. Systematic individual differences in sleep homeostatic and circadian rhythm contributions to neurobehavioral impairment during sleep deprivation. Van Dongen HP; Bender AM; Dinges DF Accid Anal Prev; 2012 Mar; 45 Suppl(Suppl):11-6. PubMed ID: 22239924 [TBL] [Abstract][Full Text] [Related]
4. Dynamic circadian modulation in a biomathematical model for the effects of sleep and sleep loss on waking neurobehavioral performance. McCauley P; Kalachev LV; Mollicone DJ; Banks S; Dinges DF; Van Dongen HP Sleep; 2013 Dec; 36(12):1987-97. PubMed ID: 24293775 [TBL] [Abstract][Full Text] [Related]
5. Investigating the interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioural performance. Van Dongen HP; Dinges DF J Sleep Res; 2003 Sep; 12(3):181-7. PubMed ID: 12941057 [TBL] [Abstract][Full Text] [Related]
6. Predicting cognitive impairment and accident risk. Raslear TG; Hursh SR; Van Dongen HP Prog Brain Res; 2011; 190():155-67. PubMed ID: 21531251 [TBL] [Abstract][Full Text] [Related]
7. Predictions from the three-process model of alertness. Akerstedt T; Folkard S; Portin C Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A75-83. PubMed ID: 15018267 [TBL] [Abstract][Full Text] [Related]
8. Critical research issues in development of biomathematical models of fatigue and performance. Dinges DF Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A181-91. PubMed ID: 15018283 [TBL] [Abstract][Full Text] [Related]
9. Prediction of Vigilant Attention and Cognitive Performance Using Self-Reported Alertness, Circadian Phase, Hours since Awakening, and Accumulated Sleep Loss. Bermudez EB; Klerman EB; Czeisler CA; Cohen DA; Wyatt JK; Phillips AJ PLoS One; 2016; 11(3):e0151770. PubMed ID: 27019198 [TBL] [Abstract][Full Text] [Related]
10. The effects of a split sleep-wake schedule on neurobehavioural performance and predictions of performance under conditions of forced desynchrony. Kosmadopoulos A; Sargent C; Darwent D; Zhou X; Dawson D; Roach GD Chronobiol Int; 2014 Dec; 31(10):1209-17. PubMed ID: 25222348 [TBL] [Abstract][Full Text] [Related]
11. A Unified Model of Performance: Validation of its Predictions across Different Sleep/Wake Schedules. Ramakrishnan S; Wesensten NJ; Balkin TJ; Reifman J Sleep; 2016 Jan; 39(1):249-62. PubMed ID: 26518594 [TBL] [Abstract][Full Text] [Related]
13. Individualized performance prediction during total sleep deprivation: accounting for trait vulnerability to sleep loss. Ramakrishnan S; Laxminarayan S; Thorsley D; Wesensten NJ; Balkin TJ; Reifman J Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5574-7. PubMed ID: 23367192 [TBL] [Abstract][Full Text] [Related]
14. Prediction of Cognitive Performance and Subjective Sleepiness Using a Model of Arousal Dynamics. Postnova S; Lockley SW; Robinson PA J Biol Rhythms; 2018 Apr; 33(2):203-218. PubMed ID: 29671707 [TBL] [Abstract][Full Text] [Related]
15. Circadian and wake-dependent modulation of fastest and slowest reaction times during the psychomotor vigilance task. Graw P; Kräuchi K; Knoblauch V; Wirz-Justice A; Cajochen C Physiol Behav; 2004 Feb; 80(5):695-701. PubMed ID: 14984804 [TBL] [Abstract][Full Text] [Related]
16. Sharp and sleepy: evidence for dissociation between sleep pressure and nocturnal performance. Galliaud E; Taillard J; Sagaspe P; Valtat C; Bioulac B; Philip P J Sleep Res; 2008 Mar; 17(1):11-5. PubMed ID: 18275550 [TBL] [Abstract][Full Text] [Related]
17. Biomathematical modeling of fatigue due to sleep inertia. McCauley ME; McCauley P; Kalachev LV; Riedy SM; Banks S; Ecker AJ; Dinges DF; Van Dongen HPA J Theor Biol; 2024 Aug; 590():111851. PubMed ID: 38782198 [TBL] [Abstract][Full Text] [Related]
18. Fatigue and performance models: general background and commentary on the circadian alertness simulator for fatigue risk assessment in transportation. Dijk DJ; Larkin W Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A119-21. PubMed ID: 15018272 [TBL] [Abstract][Full Text] [Related]
19. An improved methodology for individualized performance prediction of sleep-deprived individuals with the two-process model. Rajaraman S; Gribok AV; Wesensten NJ; Balkin TJ; Reifman J Sleep; 2009 Oct; 32(10):1377-92. PubMed ID: 19848366 [TBL] [Abstract][Full Text] [Related]