These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 17910490)

  • 1. Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels.
    Mosadegh B; Huang C; Park JW; Shin HS; Chung BG; Hwang SK; Lee KH; Kim HJ; Brody J; Jeon NL
    Langmuir; 2007 Oct; 23(22):10910-2. PubMed ID: 17910490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of linear and non-linear concentration gradients along microfluidic channel by microtunnel controlled stepwise addition of sample solution.
    Li CW; Chen R; Yang M
    Lab Chip; 2007 Oct; 7(10):1371-3. PubMed ID: 17896024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The microfluidic palette: a diffusive gradient generator with spatio-temporal control.
    Atencia J; Morrow J; Locascio LE
    Lab Chip; 2009 Sep; 9(18):2707-14. PubMed ID: 19704987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of dynamic temporal and spatial concentration gradients using microfluidic devices.
    Lin F; Saadi W; Rhee SW; Wang SJ; Mittal S; Jeon NL
    Lab Chip; 2004 Jun; 4(3):164-7. PubMed ID: 15159771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic multi-injector for gradient generation.
    Chung BG; Lin F; Jeon NL
    Lab Chip; 2006 Jun; 6(6):764-8. PubMed ID: 16738728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating multiplex gradients of biomolecules for controlling cellular adhesion in parallel microfluidic channels.
    Didar TF; Tabrizian M
    Lab Chip; 2012 Nov; 12(21):4363-71. PubMed ID: 22907392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating controlled molecular gradients in 3D gels.
    Rosoff WJ; McAllister R; Esrick MA; Goodhill GJ; Urbach JS
    Biotechnol Bioeng; 2005 Sep; 91(6):754-9. PubMed ID: 15981274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators.
    Lee K; Kim C; Ahn B; Panchapakesan R; Full AR; Nordee L; Kang JY; Oh KW
    Lab Chip; 2009 Mar; 9(5):709-17. PubMed ID: 19224022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of complex concentration profiles in microchannels in a logarithmically small number of steps.
    Campbell K; Groisman A
    Lab Chip; 2007 Feb; 7(2):264-72. PubMed ID: 17268630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitatively controlled in situ formation of hydrogel membranes in microchannels for generation of stable chemical gradients.
    Choi E; Jun I; Chang HK; Park KM; Shin H; Park KD; Park J
    Lab Chip; 2012 Jan; 12(2):302-8. PubMed ID: 22108911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber.
    Saadi W; Rhee SW; Lin F; Vahidi B; Chung BG; Jeon NL
    Biomed Microdevices; 2007 Oct; 9(5):627-35. PubMed ID: 17530414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent surface chemistry gradients for presenting bioactive peptides.
    Kipper MJ; Kleinman HK; Wang FW
    Anal Biochem; 2007 Apr; 363(2):175-84. PubMed ID: 17339030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimisation and analysis of microreactor designs for microfluidic gradient generation using a purpose built optical detection system for entire chip imaging.
    Abdulla Yusuf H; Baldock SJ; Barber RW; Fielden PR; Goddard NJ; Mohr S; Treves Brown BJ
    Lab Chip; 2009 Jul; 9(13):1882-9. PubMed ID: 19532963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroosmotic flow analysis of a branched U-turn nanofluidic device.
    Parikesit GO; Markesteijn AP; Kutchoukov VG; Piciu O; Bossche A; Westerweel J; Garini Y; Young IT
    Lab Chip; 2005 Oct; 5(10):1067-74. PubMed ID: 16175262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues.
    Joanne Wang C; Li X; Lin B; Shim S; Ming GL; Levchenko A
    Lab Chip; 2008 Feb; 8(2):227-37. PubMed ID: 18231660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of complex, static solution gradients in microfluidic channels.
    Wu H; Huang B; Zare RN
    J Am Chem Soc; 2006 Apr; 128(13):4194-5. PubMed ID: 16568971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular microfluidics for gradient generation.
    Sun K; Wang Z; Jiang X
    Lab Chip; 2008 Sep; 8(9):1536-43. PubMed ID: 18818810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple haptotactic gradient generation within a triangular microfluidic channel.
    Park J; Kim DH; Kim G; Kim Y; Choi E; Levchenko A
    Lab Chip; 2010 Aug; 10(16):2130-8. PubMed ID: 20532357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.