BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 17910623)

  • 1. Interactions between soil and tree roots accelerate long-term soil carbon decomposition.
    Dijkstra FA; Cheng W
    Ecol Lett; 2007 Nov; 10(11):1046-53. PubMed ID: 17910623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation.
    Phillips RP; Finzi AC; Bernhardt ES
    Ecol Lett; 2011 Feb; 14(2):187-94. PubMed ID: 21176050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term sensitivity of soil carbon turnover to warming.
    Knorr W; Prentice IC; House JI; Holland EA
    Nature; 2005 Jan; 433(7023):298-301. PubMed ID: 15662420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Species-specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon.
    Talhelm AF; Pregitzer KS; Zak DR
    Ecol Lett; 2009 Nov; 12(11):1219-28. PubMed ID: 19754884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of fine root turnover on forest NPP and soil C sequestration potential.
    Matamala R; Gonzàlez-Meler MA; Jastrow JD; Norby RJ; Schlesinger WH
    Science; 2003 Nov; 302(5649):1385-7. PubMed ID: 14631037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the use of delta(13)C natural abundance in separation of root and microbial respiration in a Danish beech (Fagus sylvatica L.) forest.
    Formánek P; Ambus P
    Rapid Commun Mass Spectrom; 2004; 18(8):897-902. PubMed ID: 15095359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rising atmospheric CO2 reduces sequestration of root-derived soil carbon.
    Heath J; Ayres E; Possell M; Bardgett RD; Black HI; Grant H; Ineson P; Kerstiens G
    Science; 2005 Sep; 309(5741):1711-3. PubMed ID: 16151007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labile substrates quality as the main driving force of microbial mineralization activity in a poplar plantation soil under elevated CO2 and nitrogen fertilization.
    Lagomarsino A; Moscatelli MC; De Angelis P; Grego S
    Sci Total Environ; 2006 Dec; 372(1):256-65. PubMed ID: 17023027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy.
    Langley JA; Chapman SK; Hungate BA
    Ecol Lett; 2006 Aug; 9(8):955-9. PubMed ID: 16913939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation and remobilization of ¹³C within the fine-root systems of individual Abies alba trees in a temperate coniferous stand.
    Endrulat T; Saurer M; Buchmann N; Brunner I
    Tree Physiol; 2010 Dec; 30(12):1515-27. PubMed ID: 21076129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2.
    Phillips RP; Meier IC; Bernhardt ES; Grandy AS; Wickings K; Finzi AC
    Ecol Lett; 2012 Sep; 15(9):1042-9. PubMed ID: 22776588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere of Populus tremula.
    Owen SM; Clark S; Pompe M; Semple KT
    FEMS Microbiol Lett; 2007 Mar; 268(1):34-9. PubMed ID: 17227464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO₂.
    Drake JE; Gallet-Budynek A; Hofmockel KS; Bernhardt ES; Billings SA; Jackson RB; Johnsen KS; Lichter J; McCarthy HR; McCormack ML; Moore DJ; Oren R; Palmroth S; Phillips RP; Pippen JS; Pritchard SG; Treseder KK; Schlesinger WH; Delucia EH; Finzi AC
    Ecol Lett; 2011 Apr; 14(4):349-57. PubMed ID: 21303437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Labile carbon retention compensates for CO2 released by priming in forest soils.
    Qiao N; Schaefer D; Blagodatskaya E; Zou X; Xu X; Kuzyakov Y
    Glob Chang Biol; 2014 Jun; 20(6):1943-54. PubMed ID: 24293210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels.
    Loya WM; Pregitzer KS; Karberg NJ; King JS; Giardina CP
    Nature; 2003 Oct; 425(6959):705-7. PubMed ID: 14562100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Belowground fate of (15)N injected into sweetgum trees (Liquidambar styraciflua) at the ORNL FACE Experiment.
    Garten CT; Brice DJ
    Rapid Commun Mass Spectrom; 2009 Oct; 23(19):3094-100. PubMed ID: 19705377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying carbon dioxide and methane emissions and carbon dynamics from flooded boreal forest soil.
    Oelbermann M; Schiff SL
    J Environ Qual; 2008; 37(6):2037-47. PubMed ID: 18948456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introducing a decomposition rate modifier in the Rothamsted Carbon Model to predict soil organic carbon stocks in saline soils.
    Setia R; Smith P; Marschner P; Baldock J; Chittleborough D; Smith J
    Environ Sci Technol; 2011 Aug; 45(15):6396-403. PubMed ID: 21671665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale forest girdling shows that current photosynthesis drives soil respiration.
    Högberg P; Nordgren A; Buchmann N; Taylor AF; Ekblad A; Högberg MN; Nyberg G; Ottosson-Löfvenius M; Read DJ
    Nature; 2001 Jun; 411(6839):789-92. PubMed ID: 11459055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time of flight secondary ion mass spectrometry studies of the distribution of metals between the soil, rhizosphere and roots of Populus tremuloides Minchx growing in forest soil.
    Martin RR; Naftel SJ; Macfie S; Skinner W; Courchesne F; Séguin V
    Chemosphere; 2004 Feb; 54(8):1121-5. PubMed ID: 14664840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.