BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17910958)

  • 1. Role of Ser216 in the mechanism of action of membrane-bound lytic transglycosylase B: further evidence for substrate-assisted catalysis.
    Reid CW; Legaree BA; Clarke AJ
    FEBS Lett; 2007 Oct; 581(25):4988-92. PubMed ID: 17910958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of arginine residues in the active site of the membrane-bound lytic transglycosylase B from Pseudomonas aeruginosa.
    Reid CW; Blackburn NT; Clarke AJ
    Biochemistry; 2006 Feb; 45(7):2129-38. PubMed ID: 16475802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate binding affinity of Pseudomonas aeruginosa membrane-bound lytic transglycosylase B by hydrogen-deuterium exchange MALDI MS.
    Reid CW; Brewer D; Clarke AJ
    Biochemistry; 2004 Sep; 43(35):11275-82. PubMed ID: 15366937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism of peptidoglycan binding and cleavage by the endo-specific lytic transglycosylase MltE from Escherichia coli.
    Fibriansah G; Gliubich FI; Thunnissen AM
    Biochemistry; 2012 Nov; 51(45):9164-77. PubMed ID: 23075328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic studies of the interactions of Escherichia coli lytic transglycosylase Slt35 with peptidoglycan.
    van Asselt EJ; Kalk KH; Dijkstra BW
    Biochemistry; 2000 Feb; 39(8):1924-34. PubMed ID: 10684641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of membrane-bound lytic transglycosylase B by NAG-thiazoline.
    Reid CW; Blackburn NT; Legaree BA; Auzanneau FI; Clarke AJ
    FEBS Lett; 2004 Sep; 574(1-3):73-9. PubMed ID: 15358542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment.
    van Asselt EJ; Thunnissen AM; Dijkstra BW
    J Mol Biol; 1999 Aug; 291(4):877-98. PubMed ID: 10452894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand.
    van Asselt EJ; Dijkstra AJ; Kalk KH; Takacs B; Keck W; Dijkstra BW
    Structure; 1999 Oct; 7(10):1167-80. PubMed ID: 10545329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lytic transglycosylases: bacterial space-making autolysins.
    Scheurwater E; Reid CW; Clarke AJ
    Int J Biochem Cell Biol; 2008; 40(4):586-91. PubMed ID: 17468031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of soluble and membrane-bound family 3 lytic transglycosylases from Pseudomonas aeruginosa.
    Blackburn NT; Clarke AJ
    Biochemistry; 2002 Jan; 41(3):1001-13. PubMed ID: 11790124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold.
    van Straaten KE; Dijkstra BW; Vollmer W; Thunnissen AM
    J Mol Biol; 2005 Oct; 352(5):1068-80. PubMed ID: 16139297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turnover of Bacterial Cell Wall by SltB3, a Multidomain Lytic Transglycosylase of Pseudomonas aeruginosa.
    Lee M; Domínguez-Gil T; Hesek D; Mahasenan KV; Lastochkin E; Hermoso JA; Mobashery S
    ACS Chem Biol; 2016 Jun; 11(6):1525-31. PubMed ID: 27035839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of active-site residues of dispersin B, a biofilm-releasing beta-hexosaminidase from a periodontal pathogen, in substrate hydrolysis.
    Manuel SG; Ragunath C; Sait HB; Izano EA; Kaplan JB; Ramasubbu N
    FEBS J; 2007 Nov; 274(22):5987-99. PubMed ID: 17949435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycosyl transferase activity of the Escherichia coli penicillin-binding protein 1b: specificity profile for the substrate.
    Fraipont C; Sapunaric F; Zervosen A; Auger G; Devreese B; Lioux T; Blanot D; Mengin-Lecreulx D; Herdewijn P; Van Beeumen J; Frère JM; Nguyen-Distèche M
    Biochemistry; 2006 Mar; 45(12):4007-13. PubMed ID: 16548528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic studies on N-acetylmuramic acid 6-phosphate hydrolase (MurQ): an etherase involved in peptidoglycan recycling.
    Hadi T; Dahl U; Mayer C; Tanner ME
    Biochemistry; 2008 Nov; 47(44):11547-58. PubMed ID: 18837509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A step-by-step
    Williams AH; Wheeler R; Rateau L; Malosse C; Chamot-Rooke J; Haouz A; Taha MK; Boneca IG
    J Biol Chem; 2018 Apr; 293(16):6000-6010. PubMed ID: 29483188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lytic transglycosylase MltB of Escherichia coli and its role in recycling of peptidoglycan strands of bacterial cell wall.
    Suvorov M; Lee M; Hesek D; Boggess B; Mobashery S
    J Am Chem Soc; 2008 Sep; 130(36):11878-9. PubMed ID: 18700763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-soluble substrates of the peptidoglycan-modifying enzyme O-acetylpeptidoglycan esterase (Ape1) from Neisseria gonorrheae.
    Hadi T; Pfeffer JM; Clarke AJ; Tanner ME
    J Org Chem; 2011 Feb; 76(4):1118-25. PubMed ID: 21244065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lytic transglycosylases.
    Höltje JV
    EXS; 1996; 75():425-9. PubMed ID: 8765311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-dependent complex formation between PBP2 and lytic transglycosylase SltB1 of Pseudomonas aeruginosa.
    Nikolaidis I; Izoré T; Job V; Thielens N; Breukink E; Dessen A
    Microb Drug Resist; 2012 Jun; 18(3):298-305. PubMed ID: 22432706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.