These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17910974)

  • 1. The physico-chemical properties and leaching behaviors of phosphatic clay for immobilizing heavy metals.
    Hwang A; Ji W; Kweon B; Khim J
    Chemosphere; 2008 Jan; 70(6):1141-5. PubMed ID: 17910974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing.
    Chaturvedi PK; Seth CS; Misra V
    J Hazard Mater; 2007 Aug; 147(3):698-705. PubMed ID: 17303325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal interactions with phosphatic clay: sorption and desorption behavior.
    Singh SP; Ma LQ; Harris WG
    J Environ Qual; 2001; 30(6):1961-8. PubMed ID: 11790002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of aqueous lead removal by phosphatic clay: equilibrium and kinetic studies.
    Singh SP; Ma LQ; Hendry MJ
    J Hazard Mater; 2006 Aug; 136(3):654-62. PubMed ID: 16487656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential use of lateritic and marine clay soils as landfill liners to retain heavy metals.
    Chalermyanont T; Arrykul S; Charoenthaisong N
    Waste Manag; 2009 Jan; 29(1):117-27. PubMed ID: 18550353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle morphology and mineral structure of heavy metal-contaminated kaolin soil before and after electrokinetic remediation.
    Roach N; Reddy KR; Al-Hamdan AZ
    J Hazard Mater; 2009 Jun; 165(1-3):548-57. PubMed ID: 19013716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-soluble organo-building blocks of aminoclay as a soil-flushing agent for heavy metal contaminated soil.
    Lee YC; Kim EJ; Ko DA; Yang JW
    J Hazard Mater; 2011 Nov; 196():101-8. PubMed ID: 21944705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of metal contamination using X-ray fluorescence spectrometry and the toxicity characteristic leaching procedure (TCLP) during remediation of a waste disposal site in Antarctica.
    Stark SC; Snape I; Graham NJ; Brennan JC; Gore DB
    J Environ Monit; 2008 Jan; 10(1):60-70. PubMed ID: 18175018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land.
    Kay P; Blackwell PA; Boxall AB
    Chemosphere; 2005 Jul; 60(4):497-507. PubMed ID: 15950042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [In situ immobilization remediation of heavy metals-contaminated soils: a review].
    Wang LQ; Luo L; Ma YB; Wei DP; Hua L
    Ying Yong Sheng Tai Xue Bao; 2009 May; 20(5):1214-22. PubMed ID: 19803184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Argon Plasma Treated Phosphatic Clays for Efficient Heavy Metal Pb(II) Immobilization.
    Li M; Zhang X
    Bull Environ Contam Toxicol; 2022 Jan; 108(1):122-128. PubMed ID: 34727220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans.
    NareshKumar R; Nagendran R
    J Hazard Mater; 2008 Aug; 156(1-3):102-7. PubMed ID: 18206305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trace element carriers in combined sewer during dry and wet weather: an electron microscope investigation.
    El Samrani AG; Lartiges BS; Ghanbaja J; Yvon J; Kohler A
    Water Res; 2004 Apr; 38(8):2063-76. PubMed ID: 15087187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waste disposal in clay formations: influence of humic acid on the migration of heavy-metal pollutants.
    Kautenburger R; Beck HP
    ChemSusChem; 2008; 1(4):295-7. PubMed ID: 18605092
    [No Abstract]   [Full Text] [Related]  

  • 15. Chemical fractionation and translocation of heavy metals in Canna indica L. grown on industrial waste amended soil.
    Bose S; Jain A; Rai V; Ramanathan AL
    J Hazard Mater; 2008 Dec; 160(1):187-93. PubMed ID: 18433999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attenuation of heavy metals by geosynthetics in the coal gangue-filled columns.
    Wang P; Hu Z; Wang P
    Environ Technol; 2013; 34(17-20):2889-95. PubMed ID: 24527654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant.
    Aşçi Y; Nurbaş M; Açikel YS
    J Hazard Mater; 2008 Jun; 154(1-3):663-73. PubMed ID: 18068293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting effects of municipal compost on alfalfa growth in clay and in sandy soils: N, P, K, content and heavy metal toxicity.
    Mbarki S; Labidi N; Mahmoudi H; Jedidi N; Abdelly C
    Bioresour Technol; 2008 Oct; 99(15):6745-50. PubMed ID: 18282702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of DDL processes during electrolytic reduction of Cu(II) in a low oxygen environment.
    Brosky RT; Pamukcu S
    J Hazard Mater; 2013 Nov; 262():878-82. PubMed ID: 24145069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrodialytic soil remediation enhanced by low frequency pulse current--overall chronopotentiometric measurement.
    Sun TR; Ottosen LM; Mortensen J
    Chemosphere; 2013 Jan; 90(4):1520-5. PubMed ID: 22980958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.